Температура выхлопных газов турбированного двигателя
DarkHorsepower › Блог › ОСНОВЫ ТУРБОНАДДУВА часть 1-2
Как известно, мощность двигателя пропорциональна количеству топливовоздушной смеси, попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется, чтобы маленький двигатель выдавал мощности как большой или мы просто хотим, чтобы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае, когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.
Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:
Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:
— Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха, ведет еще и к меньшей склонности к детонации нашей будущей топливовоздушной смеси.
— После прохождения интеркулера воздух проходит через дроссель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллектор (5), где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину, поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор, и, тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работы компрессора через вал турбины.
Ниже приведена схема внутреннего устройства турбокомпрессора:
В зависимости от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:
Blow-off
Блоуофф (перепускной клапан) — это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью не допустить выход компрессора на режим surge. В моменты, когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, ввиду значительной нагрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины чтобы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.
Wastegate:
Представляет собой механический клапан установленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельные моторы используют турбины без вейстгейтов. Тем не менее, подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов, которое уходит через вал на компрессор и, тем самым, управляем давлением наддува, создаваемым компрессором. Как правило, вейстгейт использует давление наддува и давление встроенной пружины, что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки, встроенной в турбинный хаузинг (улитку), пневматического актуатора, и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан, устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину ввиду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.
Водяное и масляное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована, если давление масла в вашей системе превышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно, чтобы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно также обеспечить минимум неравномерности по вертикали линии подачи воды, а также несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.
Правильный подбор турбины является ключевым моментом в постройке турбомотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливовоздушной смеси, которая через него проходит за единицу времени, определив целевую мощность, мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.
Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя, на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее, за счет большего рабочего диапазона работы двигателя и быстрого выхода турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.
Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.
Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например, вы часто могли слышать фразу "У меня стоит турбина GT2871R с 56 Trim". Так что же это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или компрессорного колеса. Еще более точно, это соотношение их площадей.
Диаметр индюсера — это диаметр колеса крыльчатки в той ее части, где воздух входит в крыльчатку, а эксдюсер это диаметр колеса, где воздух из него выходит.
Конструкция турбины такова, что индюсер компрессорного колеса меньше чем его эксдюсер, а турбинного — наоборот:
Например:
Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с:
Диаметр индюсера: 53.1мм
Диаметр эксдюсера: 71.0мм
Таким образом Trim для него будет:
Trim крыльчатки, как компрессора, так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку.
Понятие A/R хаузинга
A/R (Area/Radius) описывает геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленое на расстояние от центра вала до центра этого сечения:
Значение A/R имеет разное влияние на производительность турбинной части и компрессорной.
A/R компрессора практически не влияет на его производительность. Как правило, хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува.
A/R турбины, наоборот, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге, приходящего на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемых для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому, что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это также увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность.
При выборе конкретного хаузинга для вашего мотора, в любом случае приходится идти на компромисс балансируя между ранним наддувом и пиковой мощностью. Также надо учитывать внутреннюю конструкцию хаузинга. Далекая от оптимальной форма канала, неточности литья, возможные переходы с прямоугольного сечения на круглое — все это, в определенной, мере влияет на эффективность горячего хаузинга. Опытным путем установлено что, например, турбинные хаузинги TiAL с круглым входом имеют лучшую аэродинамику и при том же A/R обеспечивают лучшую продувку на верхах по сравнению с традиционными чугунными хаузингами с прямоугольным входом.
Также при выборе A/R следует принимать во внимание эффективность всего выпускного тракта после турбины. Использование прямоточных выхлопных систем большого сечения позволяет использовать чуть меньший А/Р турбины и при той же пиковой мощности получить более ранний выход на наддув.
Виды выпускных коллекторов и их влияние
В основном все турбоколлекторы делятся на два типа: литые log-style и трубные сварные:
Дизайн турбоколлектора довольно сложный процесс т.к. очень много факторов должно быть принянто во внимание. Ниже приведены общие советы для достижения максимальной производительности:
— Старайтесь использовать максимально возможный радиус поворотов, т.к. как каждый крутой изгиб ранера поглощает часть полезной энергии потоков газа.
— Добивайтесь равной длины ранеров для избежания перекрестного наложения выхлопных импульсов.
— Избегайте резких изменений сечения
— В сводах ранеров избегайте резких углов для сохранения направления и скорости потока
— Для лучшей отзывчивости турбины избегайте больших объемов коллектора, для большей пиковой мощности, наоборот, может быть использован больший объем коллектора
— Оптимально выбирайте длину ранеров и объем коллектора в зависимости от объема мотора и диапазона оборотов на которых необходимо получить наилучшую отдачу
Литые коллектора чаще всего применяются в заводских гражданских компоновках, в то время как сварные трубные коллекторы чаще применяются в спортивных вариантах моторов. Оба вида имеют свои достоинства и недостатки.
Литые коллекторы обычно весьма компактны и более дешевы при массовом производстве.
Трубные коллекторы могут быть изготовлены в малых сериях или единичных экземплярах для конкретного случая и не требуют такой сложной предварительной организации производства как литые. Правильно разработанный и изготовленный трубный коллектор обеспечивает длительный срок эксплуатации и значительное улучшение производительности по сравнению с литым log-style коллектором.
Твинскольный коллектор может быть как литым так и сварным трубным и используется в паре с соответствующим твинскольным турбинным хаузингом.
Назначение такой конструкции в разделении цилиндров, чьи рабочие циклы могут пересекаться между собой и для лучшего использования выхлопного импульса каждого цилиндра.
Пример твинскрольного турбинного хаузинга:
Более эффективное использование энергии выхлопных газов в твинскрольных системах ведет к улучшению отзывчивости турбины на малых оборотах и большей мощности на больших.
Степень сжатия турбомоторов.
Прежде чем приступить к обсуждению степени сжатия и давлению наддува, важно понять, что такое кнок или детонация. Детонация — это опасный процесс, вызванный спонтанным быстротекущим сгоранием топливновоздушной смеси в цилиндрах. Этот процесс вызывает резкие и большие по величине всплески давления в камере сгорания ведущие со временем к механическому разрушению поршневой группы и износу вкладышей.
Основными факторами, вызывающими детонацию являются:
— Естественная склонность самого мотора к детонации. Поскольку все моторы имеют свои конструкционные особенности, нет простого и однозначного ответа как лучше. Форма камеры сгорания, расположение в ней свечи зажигания, диаметр цилиндра и степень сжатия, качество распыла топлива — все это влияет на склонность или, наоборот, устойчивость конкретного мотора к детонации.
— Внешние условия. В турбомоторах параметры всасываемого турбиной воздуха, его температура и влажность, а также параметры воздуха, который попадает в цилиндры после турбины, влияют на склонность к детонации. Чем выше наддув, тем больше температура воздуха, поступающего в цилиндры, и тем больше вероятность возникновения детонации. Интеркулер с хорошей эффективностью охлаждения сжатого воздуха значительно помогает в борьбе с детонацией.
— Октановое число топлива. Октан — это величина показывающая стойкость топлива к возникновению детонации. Октан типовых гражданских бензинов находится в диапазоне 92-98 единиц. Специальные спортивные виды топлива имеют октан 100-120 и выше единиц. Чем выше октан, тем более стойким является топливо к возникновению детонации.
— Настройки блока управления. Угол зажигания и соотношение воздух/топливо значительным образом влияет на склонность или устойчивость мотора к детонации в различных режимах.
Теперь, когда мы разобрались с общими факторами связанными с детонацией, поговорим о степени сжатия. Степень сжатия (СЖ) определена как:
Где: CR — степень сжатия
Vd — объем цилиндра
Vcv — объем камеры сгорания
СЖ заводских моторов будет разной для атмосферного и турбомотора. Например стоковый мотор Honda S2000 имеет СЖ равную 11.1:1, в то время как турбомотор Subaru WRX имеет СЖ 8.8:1.
Существует много факторов влияющих на максимально допустимую СЖ. Нет одного простого ответа какой она должна быть. В общем случае, СЖ должна быть выбрана максимально возможной для предотвращения детонации, с одной стороны, и обеспечения максимального КПД двигателя, с другой. Факторами влияющими на выбор СЖ в каждом конкретном случае являются: октановое число применяемого топлива, давление наддува, температура воздуха в предполагаемых режимах эксплуатации, форма камеры сгорания, фазы клапанного механизма и противодавление в коллекторе.
Многие современные атмосферные моторы имеют хороший дизайн камеры сгорания и большую стойкость к детонации, что при правильной настройке блока управления позволяет устанавливать на них турбонаддув не меняя заводскую степень сжатия.
Обычной практикой при турбировании атмосферных моторов является увеличение мощности на 60-100% относительно заводской. Тем не менее, для значительных значений наддува требуется уменьшение заводской СЖ.
AFR или соотношение воздух/топливо.
При обсуждении вопроса настройки двигателя, выбраный AFR, наверное, наиболее часто встречающийся вопрос. Правильный AFR имеет крайне высокое влияние на общую производительность и надежность мотора и его компонентов.
AFR определен как соотношение количества воздуха зашедшего в цилиндр к количеству зашедшего в него топлива. Стехиометрическая смесь это смесь при которой происходит полное сгорание топлива. Для бензиновых двигателей стехиометрией является соотношение 14.7:1. Это означает что на каждую часть топлива приходится 14.7 частей воздуха.
Что означают понятия "бедная" и "богатая" смесь? Более низкие значения AFR означают меньшее количество воздуха относительно топлива и такая смесь называется богатой. Аналогично, большие значения AFR означают больше воздуха относительно топлива и называются бедной смесью.
Например:
15.0:1 = бедная
14.7:1 = стехиометрическая
13.0:1 = богатая
Бедная смесь ведет к повышению температуры горения смеси. Богатая — наоборот. В основном атмосферные моторы достигают максимальной отдачи на смеси, несколько богаче стехиометрии. На практике ее держат в диапазоне 12:1…13:1 для дополнительного охлаждения. Это хороший AFR для атмосферного мотора, но он может в некоторых случаях быть крайне опасным в случае с турбомотором. Более богатая смесь снижает температуру в камере сгорания и повышает стойкость к детонации, а также снижает температуру выхлопных газов и увеличивает срок службы турбины и коллектора.
Реально при настройке существует три способа борьбы с детонацией:
— уменьшение давление наддува
— обогащение смеси
— использование более позднего зажигания.
Задачей настройщика является поиск наилучшего баланса этих трех параметров для получения максимальной отдачи и ресурса турбомотора.
Так ли страшна турбина? Как правильно ездить с турбомотором и сколько может стоить ремонт
В нашей прошлой публикации мы уже сравнивали турбированный и атмосферный моторы, пытаясь понять, в чем их отличие и какой из них лучше выбрать. Допустим, что вы уже приобрели машину с наддувным двигателем или вот-вот собираетесь ее купить.
Как устроена турбина?
В общем-то, турбокомпрессор устроен просто. Главная деталь — это картридж. Внутри него размещается вал, а с двух противоположных концов к этому валу прикреплены турбинные колеса. Для того чтобы вал нормально вращался и не грелся, к нему под давлением подается моторное масло. Также к картриджу идет и трубка с антифризом для дополнительного охлаждения.
По бокам к корпусу картриджа прикреплены две "улитки" — горячая и холодная, внутри которых вращаются турбинные колеса. В горячую поступают выхлопные газы, раскручивают колесо, а затем "улетают" в выхлопную трубу через боковое отверстие улитки. Турбоколесо в холодной улитке всасывает чистый атмосферный воздух из впускного тракта и гонит его под сильным давлением дальше во впускной тракт к цилиндрам мотора.
Такова общая схема турбины, и мы не будем сейчас вдаваться в тонкости конструкции и различные варианты компоновки. Впрочем, стоит упомянуть новое поколение турбин, где масло подается под более низким давлением, а вал вращается в очень дорогих и сверхпрочных шариковых подшипниках.
Будет ли турбина "есть" масло?
Как мы уже говорили, без масла турбина работать не может. Обычно для герметизации вращающихся валов используют резиновые сальники (как в двигателе и коробке передач), но никакие сальники не смогут выдержать режимы работы турбины. Рабочая температура в ней достигает тысячи градусов, а частота вращения валов — сотен тысяч оборотов в минуту. Это намного более суровые условия, чем в моторе.
Валы и втулки в турбине подогнаны друг к другу с очень высокой точностью, и за счет этого масло не должно сочиться сквозь них, если турбина исправна. Но как только зазоры увеличиваются, масло через "холодную" часть турбины засасывает во впускной коллектор двигателя вместе с нагнетаемым воздухом. В таких случаях говорят, что "турбина гонит масло".
Из-за чего это происходит?
- Естественный износ рабочих поверхностей валов и втулок.
- Пониженное давление масла в двигателе: турбине не хватает смазки, и она сильнее изнашивается.
- Повышенное давление масла в двигателе: масло попросту выдавливает через щели между втулками и валами.
- Повышенное разрежение во впускном коллекторе — масло из турбины туда засасывает. В результате двигатели, где зазоры в цилиндрах близки к идеальным, угар масла из-за неисправной турбины может достигать нескольких литров на сотню километров. Вот этого-то и боятся сторонники безнаддувных моторов.
Каков ресурс турбины?
Здесь все очень индивидуально и зависит от стиля езды. В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.
Как понять, что турбина просится в ремонт?
Главный признак скорой кончины турбины — синеватый дым из выхлопной трубы. Его появление означает, что в цилиндрах вместе с топливовоздушной смесью сгорает масло. Весьма вероятно, что во впуск это масло попало именно через турбину. Чтобы провести диагностику, не нужно обладать дипломом автослесаря. Достаточно иметь книжку по устройству автомобиля, где нарисовано расположение узлов под капотом, и немного свободного времени.
- Найдите впускной патрубок, по которому воздух попадает в турбину и открутите его. Засуньте руку в "улитку" турбины и нащупайте вал, на котором закреплена крыльчатка. Покачайте его, и если есть люфт, то через щели наверняка сочится масло.
- Найдите интеркулер и загляните внутрь. Если внутри есть масло, то турбина его "гонит". Чем больше масла, тем выше износ.
Еще иногда на приборной доске турбированных автомобилей есть указатели температуры и давления турбины. Соответственно температура не должна быть повышенной, а давление — пониженным.
Все эти советы обязательно нужно учесть, если вы покупаете турбированную машину с пробегом. Турбина — вещь дорогостоящая, и ее дефект может обернуться для вас, как для будущего владельца, крупными затратами.
Сколько стоит ремонт турбины и что в ней ремонтируется?
Когда турбина выходит из строя, можно пойти тремя путями.
Поменять турбину целиком. Чаще всего это совершенно лишняя затея, потому как масло гонит картридж, а корпуса-"улитки" остаются целыми и менять их не нужно. Замену турбины в сборе любят предлагать официальные дилеры и мультибрендовые сервисы, мастера на которых плохо разбираются в турбинах и ставят задачу получить с клиента максимум денег.
Почем? Cнятие, отсоединение трубок подачи масла и антифриза и установка турбины обратно стоит около 4 000 – 5 000 рублей.
Поменять картридж турбины. Под замену идет исключительно сам рабочий элемент турбокомпрессора — корпус с валом и крыльчатками. Поменять готовый картридж может даже мастер, который не специализируется на турбинах. Задача состоит в том, чтобы открутить несколько гаек крепежа, а потом закрутить их обратно.
Почем? Стоимость картриджа с заменой — около 15 000 – 20 000 рублей.
Отремонтировать картридж. Такая работа под силу исключительно мастерам специализированных автосервисов. Турбину разбирают полностью, моют ультразвуком, выявляют изношенные элементы и меняют их. Корпус картриджа растачивают на токарном станке, а затем всю конструкцию балансируют в два этапа, чтобы на скорости до 150 – 200 тысяч оборотов в минуту не было вибрации. Затем еще в картридж закачивают под давлением масло, чтобы проверить на герметичность.
Почем? Цена ремонта турбины зависит от массы факторов и колеблется от 7 000 до 25 000 рублей. Важно понимать, что если мастера называют серьезную сумму, то зачастую проще купить новую турбину.
Охлаждение турбины дизельного двигателя
Обладатели турбомоторов часто задаются вопросом касательно необходимости охлаждения турбины перед тем, как заглушить мотор. Подобное охлаждение предполагает несколько минут работы ДВС на холостом ходу. Для получения точного ответа необходимо выяснить, в каких условиях работает турбокомпрессор двигателя. Отработавшие газы несут в себе большое количество полезной энергии, которая получена в результате сгорания топлива в цилиндрах. Перенаправление потока выхлопа на турбинное колесо позволяет реализовать эффективный привод для компрессора. Так удается получить нагнетание воздуха под давлением без отбора мощности у ДВС, что принципиально отличает турбокомпрессор от механического нагнетателя.
Рекомендуем также прочитать статью о том, как самому проверить турбину дизельного двигателя. Из этой статьи вы узнаете о различных способах диагностики нагнетателя своими руками.
Турбонагнетатель является осью, на концах которой присутствуют колеса с лопатками. Выделяют турбинное и компрессорное колесо. Указанные колеса находятся в специальных корпусах. Нагнетатель ставится в выпускном тракте, так как турбинное колесо вращается от контакта с отработавшими газами. Такое вращение позволяет компрессорному колесу вращаться параллельно, засасывать и сжимать воздух для подачи в цилиндры двигателя.
Условия работы турбины
Температура выхлопных газов дизельного двигателя на выходе перед турбиной составляет в среднем 750-850 градусов по Цельсию. Бензиновые агрегаты имеют еще более разогретый выхлоп. Такие раскаленные газы движутся с большой скоростью и встречаются с турбинным колесом.
Турбокомпрессор отличается высокой производительностью и потребляет достаточно много энергии отработавших газов (в среднем около 25-30 кВт и более). Турбодизель с рабочим объемом 2.0 литра в режиме холостого хода потребляет около 800 литров воздуха за 60 секунд. В режиме максимальной мощности данный показатель доходит до 4 м3. Если учесть, что турбокомпрессор также нагнетает избыток давления до 1 атмосферы, тогда общий объем нагнетаемого устройством воздуха намного больше.
В режиме холостого хода отработавшие газы дизеля имеют температуру около 100 градусов по Цельсию и движутся с небольшой скоростью. Для эффективного вращения колеса турбины и параллельного вращения компрессорного колеса этой энергии достаточно только для того, чтобы турбокомпрессор не препятствовал проходу через него воздуха в объеме, который необходим для поддержания стабильной работы ДВС на холостых оборотах.
Охлаждение и смазка турбокомпрессора
Колесо турбины выполнено из специальной жаропрочной стали, компрессорное колесо изготавливают из сплавов алюминия. Разные материалы применяются для снижения инерционности турбины. Вал турбины (ось, стержень) закреплен и вращается в плавающих подшипниках скольжения. Также в некоторых турбокомпрессорах могут использоваться шариковые подшипники.
Для смазки подшипников турбокомпрессора реализован подвод моторного масла из системы смазки двигателя. Кроме снижения потерь на трение и препятствования износу трущихся элементов смазка турбины также выполняет важную функцию по отводу тепла из области трения.
В трущихся элементах турбины выделяется большое количество тепла. Сама ось нагнетателя нагревается от контакта с разогретым турбинным колесом, нагрев еще более усиливается в результате высокой частоты вращения и возникающего трения. Во время работы ДВС масло активно подается к подшипникам, охлаждая их. Если мотор сразу заглушить после серьезных нагрузок на двигатель, тогда нагретая ось остановится практически сразу после остановки двигателя. Подача масла к подшипникам сразу прекращается, а сам вал и подшипники усиленно нагреваются от раскаленного колеса турбины. Сильный нагрев приводит к тому, что масло в турбине начинает закоксовываться.
Рекомендуем также прочитать статью о ресурсе турбины дизельного двигателя. Из этой статьи вы узнаете о том, какие факторы влияют на срок службы турбонагнетателя.
В момент последующего пуска турбомотора закоксовавшееся масло и отложения препятствуют нормальному доступу свежей смазки в первые секунды после запуска. Вполне очевидно, что присутствует сильный износ подшипников турбины. Для решения этой проблемы рекомендуется не сразу глушить мотор после езды, а дать силовому агрегату поработать на холостых оборотах от 2-х до 5-и минут. Температура выхлопа на холостом ходу упадет до 100 градусов Цельсия, интенсивность вращения турбины снизится. Этого времени будет достаточно для того, чтобы колесо турбины и ось успели охладиться до такой температуры, когда коксования масла не произойдет после остановки ДВС. Отсутствие кокса значительно продлевает ресурс турбины дизельного или бензинового двигателя.
Водитель останавливает машину, вынимает ключ из замка зажигания и может сразу покинуть автомобиль. Двигатель продолжает работать еще несколько минут, после чего будет заглушен автоматически. Единственным неудобством можно считать то, что приходится постоянно пользоваться стояночным тормозом и следить за его исправностью, так как сразу поставить автомобиль на передачу при наличии МКПП нельзя.
Почему масло попадает в интеркулер. Локализация и устранение возможных неисправностей своими руками. Как самому промыть и очистить инетркулер от масла.
От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.
Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.
Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.
Выбор механического нагнетателя или турбокомпрессора. Конструкция, основные преимущества и недостатки решений, установка на атмосферный тюнинговый мотор.
Возможность установки турбокомпрессора на двигатель с карбюратором. Основные преимущества и недостатки турбонаддува на карбюраторном авто.
Рекомендация по эксплуатации турбированного авто
Недавно приобрел машину с турбонаддувом и у меня сразу же возник вопрос, на что нужно обратить внимание при эксплуатации турбины, чтобы она прослужила как можно дольше? Ведь ремонт турбины – дело не дешевое, а опыта вождения турбированных машин у меня нет. Я тщательно изучил тему и постарался в этом посте сделать для вас полезную «выжимку» основной информации.
О турбинах в целом
Турбонаддувы устанавливаются на многие современные модели двигателей, как на бензиновые, так и дизельные. У каждого производителя свой подход и свое видение оптимального использования турбины. Некоторые устанавливают на двигатель наддувы низкого давления, основная задача такого узла – создавать потоки воздуха для подготовки более качественной воздушно-топливной смеси. Другие ставят наддувы высокого давления – более производительные и эффективные, которые позволяют существенно повысить мощность мотора.
К недостаткам турбин высокого давления относят сложную конструкцию. Агрегат работает на высоких оборотах и частота его вращения не всегда в достаточной мере синхронизируется с оборотами двигателя. Чтобы на больших оборотах чрезмерное давление не нанесло урон, используется специальный клапан, который стравливает избыточное давление. Еще одна важная деталь такой турбины – интеркулер. Он необходим для охлаждения воздуха, который нагревается в процессе работы наддува. Чем холоднее воздух, тем больше его содержится в единице объема, а значит – смесь богаче кислородом.
Если на старых моделях при резком нажатии на газ происходил провал мощности (так званная турбояма), то сегодня конструкторам практически полностью удалось решить эту проблему. Как и двигатели, турбины со временем совершенствуются, устраняются их недостатки, повышается эффективность и надежность.
Некоторые двигатели оснащаются несколькими турбинами, одна из которых работает на низких оборотах, а другая – на высоких. Это позволило решить проблему падения мощности. Еще одно конструктивное решение – турбины с переменной производительностью. Их особенность в том, что лопасти рабочих лопаток могут менять наклон, в результате чего меняется производительность наддува. Совершенствование турбин дало возможность повысить мощность двигателей или использовать двигатели меньшего размера при тех же параметрах мощности.
Как работает турбина
Турбина приводится в движение под воздействием давления выхлопных газов. Они давят на крыльчатку, обеспечивая вращение на высоких оборотах – более 100 тыс. об/мин. Ведущая крыльчатка крепится на одну ось с ведомой, а общий вал – к корпусу турбины через подшипники скольжения. Смазка обеспечивается за счет моторного масла, которое подается к подшипникам под давлением.
Так же видео и полезные статьи доступны в нашей официальной группе в vk.com/rem_turbo
После остановки двигателя давление масла падает, хотя турбина продолжает вращаться по инерции. Такая ситуация приводит к увеличению зазора между валом и подшипниками скольжения, в результате масло начинает просачиваться во впускной коллектор, а дальше – в цилиндр двигателя, где и сгорает. Если имеет место выработка и зазор между валом и подшипником стал больше, в таком случае появляются посторонние шумы (вой) со стороны наддува.
Стоит отметить, что после остановки двигателя турбина долго вращаться не может, так как ее не приводят в движение отработанные газы, вращение осуществляется за счет инерционных сил.
На ресурс турбины влияет и режим ее работы. Например, если агрегат часто работает на повышенных оборотах, он может перегреваться. Непрерывный поток раскаленных выхлопных газов назревает наддув. А так как тепло от него отводится в основном тем же моторным маслом, то снижение давления или отсутствие притока (после остановки двигателя) приводят к тому, что остатки масла в перегретой турбине выгорают, в результате чего образуется нагар. Это ведет к повышенному износу деталей. Поэтому рекомендуется использовать качественное моторное масло, которое повысит не только ресурс самого двигателя, но и наддува.
Для повышения срока службы турбины целесообразно использовать турбо-таймер. Это устройство, которое обеспечивает задержку остановки двигателя после отключения зажигания. Этой паузы достаточно для того, чтобы агрегат успел остыть. Современные турбо-таймеры оснащены датчиками температуры, на основании полученных от них данных рассчитывается необходимое время задержки остановки двигателя. Использование такого устройства имеет и недостаток – при перегреве турбины в процессе езды оно может отключать ее.
О поломках турбины. Повреждения при попадании инородных частиц.
Очень часто неисправности турбины становятся следствием попадания внутрь инородных частиц. Так как агрегат работает на сверх высоких скоростях, даже микрочастицы могут привести к быстрому износу деталей. Определить такие повреждения легко, они проявляют себя в виде видимых механических повреждений на крыльчатке.
Наддув с поврежденной крыльчаткой использовать нельзя. Из-за возникшего дисбаланса на высоких оборотах будет появляться вибрация, возникает риск полного разрушения турбины, что может нанести существенный урон двигателю.
Недостаточная подача масла
Недостаточное количество масла в наддув может поступать по ряду причин:
- неправильная установка турбины;
- долгий простой двигателя;
- неисправность системы подачи масла;
- засор в трубке подачи масла;
- низкий уровень масла в картере;
- запуск двигателя при не полностью заполненных масляных каналах.
- недостаток масла ведет к повышенному износу и перегреву турбонаддува.
Загрязненное масло
Чтобы турбина служила как можно дольше, необходимо не только использовать качественное масло, но и следить за его состоянием – своевременно менять. Загрязненное масло содержит большое количество инородных частиц, которые провоцируют износ вала, подшипников.
Как правило, замена масла и масляного фильтра проводится при проведении регламентного техобслуживания. Рекомендуется это делать также после замены турбонаддува.
Грязь в турбину может попадать по разным причинам. Чаще всего – из-за засорения масляного фильтра. Также инородные частицы попадают в масло во время сервисных работ, в результате износа деталей, по причине использования некачественного масла и т.д.
Карбоновый налет
Причиной появления карбонового налета может стать высокая температура выхлопных газов или остановка двигателя сразу после запуска. Чтобы не допустить этого, рекомендуется после пуска двигателя не глушить его несколько минут, пусть он поработает на холостом ходу без нагрузки. За это время масло прокачается через систему, обеспечив смазку и охлаждение деталей. Если наддув перегревается, то это может вызвать карбонизацию масла, что приведет к повреждениям подшипников, вала, маслоупорных колец.
Карбонизация масла возникает не только из-за неправильной эксплуатации (остановка мотора сразу после пуска). К другим причинам можно отнести плохое качество масла, его нерегулярная замена, неисправность топливной системы, утечки воздуха, выхлопа и т.д.
О техническом обслуживании турбины
При эксплуатации автомобиля с турбонаддувом обязательно нужно учитывать, что требования к качеству масла для таких двигателей выше, соответственно расходы на ТО будут выше. С другой стороны, для автомобилей с таким двигателем периодичность техобслуживания меньше, чем у атмосферников.
Если заливать качественное масло это влияет, как на ресурс турбины, так и двигателя в целом. Но нужно помнить, что при эксплуатации двигателей с наддувом не стоит пренебрегать заменой фильтров, не рекомендуется долго эксплуатировать турбину на высоких оборотах. При проведении любых регламентных работ рекомендуется проверять и состояние турбокомпрессора. Своевременное выявление неполадок позволяет избежать негативных последствий и дорогостоящего ремонта.
Итог
1. После запуска двигателя нельзя сразу его глушить . Необходимо дать ему поработать несколько минут, чтобы обеспечить нормальную подачу масла для смазки и охлаждения наддува. Не рекомендуется резко повышать обороты на только что запущенном двигателе, чтобы крыльчатка не вращалась на больших оборотах при недостаточном количестве масла. Иначе это приведет к неисправности узла.
2. Если после пуска двигателя вы начинаете движение, постарайтесь ехать на небольших оборотах.
3. Если двигатель какое-то время работал на высоких оборотах, необходимо дать ему несколько минут остыть до остановки двигателя . Это связано с тем, что даже после остановки крыльчатка турбины вращается, а масло поступать уже не будет, соответственно оно не сможет охладить агрегат. Резкий перегрев и перепады температуры значительно сокращают срок службы наддува.
4. Не рекомендуется надолго оставлять двигатель работать на низких оборотах , так как в такой ситуации из-за низкого давления возможно протекание масла через соединительные элементы. В результате оно будет попадать в двигатель и сгорать.
5. Менять масло нужно регулярно , строго за этим следить и заливать исключительно качественное масло. Также не стоит забывать о масляном и воздушном фильтре, от их качества и своевременной замены зависит надежная работа наддува и срок его службы.
6. Периодически следует проверять уровень масла . При необходимости – доливать.
7. На турбированных авто не рекомендуется резко газовать на непрогретом двигателе. Необходимо, чтобы температура поднялась хотя бы до 50-60 градусов, только после этого можно давать нагрузку. Особенно на это нужно обращать внимание в холодную пору года и тем, кто ездит на дизельных двигателях. Такой тип мотора долго нагревается и после запуска сразу же начинать движение не рекомендуется.
Простейшие рекомендации по правильной эксплуатации турбированного двигателя
В последние годы отмечается тенденция, когда большинство автопроизводителей отказываются от атмосферных многолитровых двигателей, устанавливая вместо них компактные турбированные мощные и экономичные агрегаты. Преимуществ у таких двигателей внутреннего сгорания масса. Это их легкий вес, экономичность и прекрасная мощность. Нужно лишь помнить о том, что эксплуатировать такой автомобиль без каких-либо проблем можно только в том случае, если автовладелец знает и учитывает правила по использованию такой техники.
Особенности современных турбомоторов
Современные турбомоторы имеют рабочий объем в полтора-два литра, при этом они могут оснащаться сразу одной или нескольким турбинами небольшой мощности, что позволяет не только увеличить показатели мощности, но и решает проблемы с так называемой турбоямой. У таких автомобилей полностью отсутствует провал мощности до момента подключения нагнетателя, соответственно улучшается удобство эксплуатации таких автомобилей.
Однако великолепные эксплуатационные характеристики, мощность и экономичность принесены в жертву надежности. Если ранее двигатели могли прослужить на протяжении 300 тысяч километров и более, не требуя при этом капитального ремонта, то сегодня небольшие по-своему литражу турбоагрегаты обычно имеют ресурс в 150-200 тысяч километров. При этом первые неисправности могут отмечаться уже на 50-70 тысяч километров пробега, в особенности, если автовладелец не обеспечивает своевременный и качественный сервис машине.
Рекомендации по эксплуатации турбомоторов
Автовладельцу необходимо помнить о том, что беспроблемность эксплуатации турбодвигателя будет во многом зависеть от системы смазки, которая отвечает за охлаждение нагнетателя. В процессе работы турбина может раскручиваться до 15000 оборотов в минуту и более, при этом она смазывается и охлаждается маслом, которое циркулирует по системе каналов под высоким давлением. Даже малейшая неисправность системы смазки может привести к заклиниванию крыльчатки, а в последующем восстановить такой нагнетатель будет уже невозможно.
Автовладельцу необходимо проверять состояние масляного и воздушного фильтра, которые должны своевременно меняться в полном соответствии с требованиями автопроизводителя. Стоит масляному фильтру забиться, как ухудшается качество смазки. Крыльчатка и все подвижные элементы нагнетателя начинают работать посуху, что приводит к масляному голоданию, их преждевременному износу и серьезным поломкам. Поэтому пренебрегать интервалом сервисного обслуживания или использовать некачественные расходные материалы и технические жидкости при выполнении таких работ строго запрещается.
Часто автовладельцы упускают из виду тот факт, что запускать турбодвигатель необходимо более аккуратно, в сравнении с обычным атмосферным агрегатом. Сразу после заведения мотора активно газовать, тем самым прогревая машину, не следует. Двигатель должен проработать на холостых оборотах не меньше минуты, что позволит обеспечить равномерное давление в системе смазки. Тогда как активно газуя на ещё непрогретой машине, автовладелец быстро выводит из строя турбонагнетатель, который некачественно смазывается, и уже к 50 000 километров пробега появляются первые проблемы, после чего требуется выполнять дорогостоящий ремонт.
При выполнении сервисного обслуживания или после мелкого ремонта турбомотора необходимо следить за состоянием системы смазки. Само масло должно быть чистым, без примесей посторонних включений, а если техническая жидкость быстро темнеет, то необходимо прочистить мотор с помощью соответствующей автохимии. Ремонтные работы на турбированных моторах представляют большую сложность, поэтому доверять свой автомобиль специалистам из гаражных сервисов мы бы вам не рекомендовали. Конечно, после завершения гарантии отвозить машину в дорогостоящий сервис у официального дилера не стоит, но и экономить на профессионализме исполнителей то же не следует.
При необходимости эксплуатации автомобиля в зимнее время года не лишним будет перед тем как запускать мотор провернуть несколько раз зажигание, что обеспечивает правильное циркулирование масла, и в последующем сразу после включения агрегат будет качественно смазываться, даже при условии низких температур на дворе. Зимой некачественное масло быстро загустевает и не обеспечивает качественную смазку агрегата. Поэтому рекомендуется сервисные работы с двигателем приурочить к осени, что позволит быть полностью уверенным в качестве технической жидкости и беспроблемности эксплуатации автомобиля.
Основной причиной поломок турбомоторов является неправильная остановка двигателя. Во время работы нагнетатель раскаляется, поэтому если просто заглушить машину, то по причине экстремально высоких температур металл может деформироваться, что приводит в последующем к существенному сокращению срока службы двигателя и необходимости выполнять дорогостоящий ремонт. Мотору после поездки необходимо дать поработать несколько минут, после чего можно заглушить машину. Также решить проблему можно путем установки так называемых турботаймеров. Это специальное устройство, которое позволяет заглушить двигатель, машина ставится на охрану после ее закрытия, но при этом работает вентилятор, который обеспечивает качественное охлаждение турбины.
Ещё одной распространенной ошибкой при эксплуатации таких автомобилей является частая работа на холостом ходу. Следует полностью исключить работу при холостых оборотах длительностью более 30 минут. Именно при таких минимальных оборотах в системе появляется низкое давление, что приводит к образованию протечек по соединениям. Поэтому не стоит удивляться, что у машины, которая часто простаивает в пробках, появляются проблемы с мотором, выхлоп становится сизым, а в скором времени приходится растачивать агрегат и менять головку блока.
Выводы
Использование турбомотора имеет свои определенные особенности, которые автовладельцу нужно обязательно учитывать, что позволит избежать серьезных поломок, сократив расходы на эксплуатацию такого автомобиля. В первую очередь необходимо будет обеспечить отличное техническое состояние, а особое внимание уделяется состоянию системы смазки. Машину необходимо правильно прогревать. Уже в последующем после окончания поездки нужно дать поработать мотору несколько минут и лишь после этого глушить авто, что обеспечит правильное охлаждение турбины.
Читайте также: