Температура сгорания бензина и газа в двигателе внутреннего сгорания
Как влияет ГБО на двигатель?
На эту тему написано очень много статей, которые описывают этот вопрос как с положительной, так и с отрицательной стороны. Отрицательное влияние ГБО на двигатель возможно, но только при несоблюдении основополагающих правил установки и использования ГБО (об этом чуть позже).
Итак, для начала определим, что в качестве газового топлива для автомобиля подходят два вида газа: пропан-бутан (СНГ) и метан (СПГ). Пропан-бутан – это сжиженный нефтяной газ, он очень схож по своим свойствам с бензином, поэтому он широко распространен на территории РФ и является основной альтернативой бензину. Именно про пропан-бутан и пойдет речь в этой статье.
Так как речь идет конкретно о влиянии газа на двигатель, не будем обсуждать общие плюсы и минусы автомобиля с ГБО, а разберем узконаправленный вопрос. Существуют мнение о вреде газового топлива на ДВС и наоборот – мнение о том, что ресурс двигателя увеличивается. Итак, предстоит немного внести ясность в столь противоречивые взгляды. Начнем с явных плюсов. Благодаря высокому октановому числу, газ в двигателе горит гораздо «мягче» бензина, тем самым оказывает меньшую ударную нагрузку на цилиндропоршневую группу и уменьшат её износ на 30-40 %. Газ попадает в двигатель в парообразном состоянии, что улучшает его смешивание с воздухом. Далее происходит более равномерное наполнение камеры сгорания и увеличивается эффективность горения. Также газ благоприятно влияет на моторное масло, которое играет большую роль в сроке службы двигателя. Во-первых, газ, попадая в камеру сгорания, не смывает маслянистую пленку со стенок цилиндра. Благодаря этому улучшается качество смазки деталей. Во-вторых, из-за отсутствия серы в составе газа значительно меньше нагружается (загрязняется) моторное масло, следовательно, оно дольше сохраняет свои чистящие и смазывающие свойства.
Теперь минусы. Основными аргументами противников ГБО являются утверждения, что двигатель создан для работы на бензине, что газ сушит двигатель и неизбежен прогар клапанов. Газ хоть и сильно похож на бензин по своим свойствам, но все же есть отличия. Во-первых, являясь чистым топливом, газ в своем составе не содержит побочных маслянистых примесей, которые создают дополнительную пленку между седлом клапана и самим клапаном. Действительно, это свойство газа ухудшает тепловой контакт клапана с седлом головы двигателя, чем затрудняет охлаждения клапана и, видимо, именно этот эффект имеют ввиду, когда употребляют выражение «газ сушит», так как топливо (ни бензин, ни газ) не участвует в прямом процессе смазки ни резинотехнических изделий, ни механических элементов двигателя.
Во-вторых, сам процесс горения газа отличен от горения бензина. Самые главные для нас отличия это температура горения и скорость горения. Газ, благодаря высокому октановому числу, горит медленнее бензина и с большей температурой.
Теперь давайте разберемся, как это отражается на работе двигателя и его ресурсе.
Итак, можно подвести итог. Газ и бензин, безусловно, – это разное топливо, но у каждого есть свои преимущества и недостатки. На главный вопрос «Как влияет ГБО на двигатель?», взвесив все факты, отвечаем: при правильном выборе газового оборудования, грамотной установке и своевременном обслуживании системы, ресурс работы двигателя на газе, может, и не увеличивается, но уж точно не уменьшается. При этом параметры двигателя, работающего на газе, никак не отличаются от его параметров на бензине.
Но все это так только при соблюдении трех основных правил!
- Правильный подбор компонентов газовой системы под конкретный автомобиль и условия эксплуатации;
- Грамотная установка с соблюдением правил технического регламента;
- Полная настройка системы, в том числе настрой в движении.
Поэтому очень важно обратиться к профессионалам, которые имеют достаточный опыт в установке газового оборудования на автомобили и несущих ответственность за свою работу.
Почему моторы машин на газе греются интенсивнее, чем бензиновые
Газобаллонное оборудование (ГБО) в России, и не только, пользуется популярностью, несмотря на то, что его необходимо регистрировать отдельно. Есть модели от «Лады», которые с завода идут уже с ГБО. Но, в основном, автомобилисты сами, уже после покупки ТС, ставят баллоны.
Причина понятна: выходит дешевле. Если ездить много – окупается. Государство ввело программу субсидирования установки ГБО, потому что ему польза тоже есть. Например, в атмосферу выбрасывается меньше вредного. И есть куда реализовывать газ в больших объемах.
Но с моторами, которые работают на метане, на смесях, есть проблема: они греются сильнее, чем те, что функционируют на бензине. В сети описывают случаи, когда стрелка, показывающая температуру, при работе ДВС на газе, быстро доходит до красной зоны.
Давайте разберемся, почему так.
Первое, о чем нужно сказать: температура горения газа ниже, чем у бензина. Но, несмотря на это, первый вид топлива из указанных горит дольше. Поэтому нагреваются:
- седла клапанов;
- сами клапана;
- ГБЦ.
И при сгорании бензина идет нагрев, но не такой.
Можно вспомнить про то, что октановое число у газа повыше – в районе 100 – 105. Но это к делу не относится. Вернее, есть только косвенная связь с высокой температурой мотора.
Ведь ОЧ – это показатель детонационной стойкости. Температура горения – это немного другое.
Можно рассматривать и такие версии возникновения проблемы:
- неправильно выставлены зазоры клапанов;
- зажигание подстроено под бензин, а оно должно быть выставлено немного с опережением;
- засорен редуктор, есть конденсат.
Это все влияет. Насколько значительно – вопрос. Сам по себе газ нагревает мотор сильнее именно потому, что горит дольше. В этом вся суть.
Можно встретить и такую теорию: топливно-воздушная бензиновая смесь, поступая в двигатель в жидком виде, охлаждает систему. Газ, в силу своих физических свойств, этого сделать не может. Поэтому и рабочая температура двигателя выше.
Я считаю, что на эту проблему стоит обращать внимание, если при работе на газе, ДВС греется очень уж сильно – стрелка находится в красной зоне, постоянно работает вентилятор радиатора. В остальных случаях все это нужно воспринимать как должное.
Я с удовольствием ознакомлюсь с вашими версиями того, почему мотор, работая на газе, греется. Пишите в комментариях! Если вы согласны со мной – поддержите лайком!
Сообщества › Ремонт и Эксплуатация ГБО › Блог › Мифы о ГБО
В ходе прочтения я ужаснулся тем заблуждениям и/или неточностям, которые были высказаны в комментариях. Так как я давно уже занимаюсь развенчанием подобных заблуждений на профильных форумах, у меня накопилось прилично материала по этой тематике. Попробую выложить их тут – авось, кому-то да пригодится. Ни одно из моих утверждений не является голословным.
Бывает так, что заблуждения «кучкуются» вокруг какой-то одной темы. С такой темы мы и начнем, и тема эта – расход газа. ГБО ведь ставится не для красоты, а во имя уменьшения расходов на ежедневные поездки.
Миф1: «Расход газа считается так же, как расход бензина»
Миф2: «Расход газа на ГБО последних поколений такой же, как расход бензина»
Миф3: «Расход газа на исправном ГБО не должен быть больше, чем на 10% от расхода бензина».
Наслушется народ таких вот мифов, и начинается подсчет: вот на бензе у меня был расход 10, на газе – 12, то естьвырос на 20% — почему так много? Вот у чувака на такой же машине с таким же ГБО расход газа вообще снизился – до 9л на сотню. Да и установщики чесали что будет не более чем на 10% больше… Что-то тут не так!
На самом деле, все просто. Принцип работы двигателя при переходе на газ ни капельки не изменился. Это все так же тепловой двигатель, который работает по циклу Отто, превращая тепловую энергию от сгорания топлива в механическую работу по перемещеню автомобиля из точки А в точку Б.
Опа-опа, а что у нас с «тепловой энергией»? Сколько нужно сжечь газа, чтоб получить столько же энергии, сколько дает сжигание одного литра бензина?
Ответ: 1,2 — 1,3 литра в зависимости от количественного состава пропан-бутановой смеси. В среднем – 1,25 литра. То есть – на 25% больше, а ни разу не 10%! Сцуко физика-химия, их ведь не обманешь!
Пропан:
Плотность жидкой фазы = 0.51 кг/л
Удельная теплота сгорания = 48 МДж/кг
Теплота сгорания одного литра = 0.51 * 48 = 24.48 Мдж
Бутан:
Плотность жидкой фазы = 0.58 кг/л
Удельная теплота сгорания = 45.8 МДж/кг
Теплота сгорания одного литра = 0.58 * 45.8 = 26.564 Мдж
Бензин:
Плотность = 0.7кг/л
Удельная теплота сгорания = 46 МДж/кг
Теплота сгорания одного литра = 0.7 * 46 = 32.2 Мдж
Кол-во литров бутана дла замещения литра бензина = 32.2 Мдж / 26.564 Мдж = 1.21
Кол-во литров пропана дла замещения литра бензина = 32.2 Мдж / 24.48 Мдж = 1.31
Так что же – установщики, да и чувак с упавшим расходом врут? Не поверите – они говорят чистую правду. С их точки зрения прибавка расхода действительно составит 10%.
«Фак мой мозг», скажете вы. Да как это так получается?
А вот так. Расход газа большинство народа считает неправильно, оттого и результаты у всех разные.
Вот был один вид топлива – бензин – все было просто. Заправил до полного, отъездил «до лампочки», снова заправил до полного. Поделил литры на километры, домножил на 100 – на тебе расход.
Но автомобиль с ГБО при эксплуатации расходует два вида топлива: собственно газ (что логично) и бензин.
Расход бензина может отсутствовать только у владельцев ГБО первого-второго поколения (эжекторное ГБО. Можно завестись на газе. Не рекомендуется, т.к. это гробит редуктор) и пятого-шестого (впрыск жидкой фазы, редуктора вообще нет). Наиболее популярное инжекторное ГБО4 поколения (впрыск паровой фазы во впускной коллектор) требует прогрева двигателя до температуры 35-55 градусов. Естественно, прогрев происходит при работе двигателя на бензине.
Вот как схематически может выглядеть рядовая поездка с точки зрения расхода двух топлив:
Если применить ту же логику, что и раньше, то в формулу закрадывается ошибка – не учитывается расход собственно бензина на участке АВ, который подменяет собою газ при непрогретом двигателе. Даже если собственно движения на газе не происходит (чувак греет автомобиль на месте), и расстояние АВ равно нулю – все равно бензин на прогрев так или иначе расходуется. А зимой его, кстати, уходит не так и мало.
Степень влияния «неучтенного» бензина сильно зависит от среднего пробега автомобиля на один прогрев. Если кто проезжает за раз 5 км, то он действительно получит расход газа меньше, чем до этого был расход бензина – за счет увеличения расход бензина, естественно. А чувак с пробегом в 100-150 км – получит расход газа куда больше. Зато расход бензина у него будет меньше.
Кстати, именно поэтому расход по трассе у «газированных» автомобилей практически всегда соответствует +25% к их бензиновому расходу.
Вот чтобы не заморачиваться более со всей этой сложной темой насчет расхода – прогревы, средние пробеги, город-трасса и т.д., проще всего экономические расчеты по газу и бензину вести через энергоемкость. Ведь любое топливо – это лишь энергоноситель.
Резюме: расход сжиженого газа всегда составляет около 125% от расхода бензина даже при идеальной установке ГБО.
Следующая группа мифов посвящена температцуре горения газа по сравнению с температурой горением бензина:
Миф4: «Газ горит при более высокой температуре, чем бензин»
Миф5: «Раз газ горит горячее, то и свечи должны быть с большим калильным числом»
Миф6: «Раз газ горит горячее, то поршни/клапана/седла сильнее нагреваются, что приводит к их усиленному износу»
Миф7: «Раз газ горит горячее, то при особо нагруженных режимах нужно переводить двигатель на бензин»
Миф8: «Раз газ горит горячее, то его нельзя применять на турбированных двигателях»
Ну что же, будем разбираться – а что вообще такое – «температура горения», от чего она зависит, и действительно ли газ горит горячее?
Горение – экзотермическая химическая реакция, в ходе которой кислород воздуха окисляет углеводороды до воды и углекислого газа. Азот в ходе горения не участвует (вернее, почти не участвует – им смело можно пренебречь).
Температуру пламени можно вычислить, исходя из теплопроизводительности сгорания того или иного вида топлива, и теплоемкости продуктов сгорания.
Например, теплота вспышки стехиометрической бензовоздушной смеси в цилиндре двигателя объемом 1,6л составит 1480 джоулей, а теплота вспышки стехиометрической смеси пропан-бутана даст 1420 джоулей.
Расчеты-пруф под катом:
Удельный вес воздуха = 0.0012041 кг/л при 20 градусах
Удельный вес пропана = 0.002019 кг/л
Удельный вес бутана = 0.002703 кг/л
Удельный вес паров бензина — увы, табличных данных не нашел. Если принять среднюю длину углеродной цепочки 8 атомов углерода, то удельный вес паров можно принять за 0.0045 кг/л
Стехиометрическое соотношение воздух/пропан = 15.6
Стехиометрическое соотношение воздух/бутан = 15.3
Стехиометрическое соотношение воздух/бензин = 14.7
рассчитываем вес горючего вещества
V = m1/r1 + m2/r2 ; V — объем смеси газов, m1 масса воздуха, m2 масса горючего, r1 плотность воздуха, r2 плотность горючего
m1 = S*m2 ; S — стехиометрическе соотношение
V = S*m2/r1 + m2/r2
V = m2 * (S/r1 + 1/r2)
m2 = V / (S/r1 + 1/r2)
Или в цифрах:
вес порции пропана = 0.4 / (15.6 / 0.0012041 + 1/0.002019 ) = 0.0000297375 кг
вес порции бутана = 0.4 / (15.3 / 0.0012041 + 1/0.002703 ) = 0.00003058911 кг
вес порции бензина = 0.4 / (14.7 / 0.0012041 + 1/0.0045 ) = 0.00003217888 кг
И, наконец, искомое — теплота вспышки одной порции топливовоздушной смеси:
пропан = 0.0000297375 кг * 48 МДж/кг = 1427.4 Дж
бутан = 0.00003058911 кг * 45.8 МДж/кг = 1401 Дж
бензин = 0.00003217888 * 46 МДж/кг = 1480.2 Дж
Качественный состав продуктов сгорания газа и бензина одинаков, а количественный – почти одинаков: в продуктах сгорания газа содержится чуть больше паров воды. А как известно из справочника, теплоемкость паров воды больше, чем у углекислого газа.
Отсюда вывод: температура горения газа ну никак не может быть больше, чем температура горения бензина. На самом деле – она слегка меньше.
Теоретические расчеты подтверждаются практическими опытами с ЕГТ-датчиком.
А как же остальные мифы этого семейства? Как же свечи «под газ», их же выпускают именитые фирмы типа Denso и NGK. У них же толпа инженеров – они ж не могут быть тупее какого-то киевского программиста?
Ответ таков: инженеры тут ни при чем. Со свечами тут прикол такой же, как с гомеопатическими «лекарствами». Народ верит в их лечащее действие – значит, можно продавать. Хуже ж точно не будет, если в газовый двигатель поставить холодную свечу. Газ тем характерен, что при его сгорании не образуются твердые отложения, и даже холодная свеча отлично работает. Профит! Странно, что вместе со свечами «под газ» не продают также и ремни привода агрегатов «под газ» и коврики в салон «под газ». То бишь балом правят как раз не инженеры, а маркетологи.
Остальные мифы, связанные с температурой горения газа, являются чуть более сложными. Да, если сравнивать температуры горения газа и бензина в одинаковых условиях, то газ горит с чуть меньшей температурой, чем бензин. Но кто сказал, что условия всегда будут одинаковые? Из-за неправильно подобранного оборудования (в первую очередь – редуктора и форсунок), жопорукой установки и кривой настройки условия горения газа могут сильно отличаться от условий горения бензина. Там, где подавалась слегка обогащенная бензиновая смесь (для наиболее быстрого сгорания, что нужно для максимума мощности) такая кривая система может выдать сильно обедненную смесь. Время ее горения будет значительно ниже, чем у богатой бензиновой. А поджигаться она будет исходя из предположения, что с составом все ОК. В результате имеем позднее зажигание и снижение КПД. Как следствие – повышенный нагрев камеры сгорания, турбины (у кого есть) и т.д.
Масла в огонь подливает то, что именно турбированные моторы наиболее критичны к производительности форсунок и редуктора.
Резюме: при прочих равных условиях газ горит при температуре чуть ниже, чем та, при которой горит бензин. При обеспечении правильных условий горения топлива во всех режимах работы двигателя газ не может навредить. При нарушении же условий подачи топлива запороть двигатель можно и на газе, и на бензине: попробуйте-ка понаваливать на «турбе» на бедной смеси — увидите, что станет с двигателем вообще и с турбиной в частности.
Начнем с самого первого мифа. На самом деле, в одинаковых условиях газ горит примерно на 5% быстрее, чем бензин. Да-да, именно так. Но речь идет именно об одинаковых условиях! А самое главное условие, влияющее на скорость горения топлива — это коэффициент избытка воздуха (λ). Иными словами, если сравнивать горение бензина при λ = 0.86 (богатая смесь, наиболее бысстрое горение) и горение газа при α = 1,25 (бедная смесь, наиболее медленное горение), то миф превращается в чистую правду.
Из буржуинских исследований я вытянул два вот таких графика:
Обратите внимание, в обоих графиках скорость горения зависит от коэффициента избытка горючего φ (а не коэффициента избытка воздуха λ, как это обычно принято у автомобилистов). λ = 1 / φ, φ = 1 / λ
Левый – это аналитический прогноз. Правый – экспериментальные данные. Исследования никак друг с другом не связанные, напрямую сравнивать их нельзя. Но всегда можно привязаться к изооктану – его-то свойства не могут изменяться от исследования к исследованию. Исходя из левого графика, скорость горения бензина должна быть на ((42,5 – 40) / 40) * 100% = 6,25% выше, чем изооктана.
Стехиометрическая смесь пропана при по факту горит со скоростью 39 см/с, изооктана – 32 см/с. Смесь бензина горела бы на 6,25% быстрее изооктана, или со скоростью 34 см/с. Пропан горит на 5 см/с или на 15% быстрее. Во всяком случае – уж точно не медленнее.
Но посмотрите, что произойдет, если взять горение изооктана при λ = 0,9, а пропана – при λ = 1,25. В таком случае, бензин будет гореть со скоростью 34 см/с * 1,0625 = 36 м/с, а пропан – 26 м/с, о чем я и писал выше.
Нормально подобранное, установленное и настроенное ГБО обеспечивает сгорание газа при таком же λ, как «было запланировано» для бензина. И в этом случае утверждение о газе, горящем в коллекторе – чистой воды миф. И не важно, с какими оборотами крутить двигатель. И ничего страшного, если угол опережения зажигания «под бензин».
Косвенное доказательство – это уже упомянутый расход газа. Ведь если бы газ сгорал в коллекторе, это неизбежно привело бы к падению КПД и, как следствие, возрастанию расхода по сравнению с расчетным. Но т.к. правильно посчитаный расход газа составляет 1,25 от расхода бенина – значит, никакого падения КПД не происходит. А значит – нет и никакого догорания газа в коллекторе.
Так что же, прошивка под газ либо вариатор УОЗ – это тоже гербалайф?
Оказывается, нет. Только дело тут вовсе не в скорости горения газа, а в другой его важнейшей особенности – детонационной стойкости.
Ни для кого не секрет, что даже пропан-бутан имеет октановое число под 100 (метан – около 120). Это дает возможность использовать не тот угол опережения зажигания, который с завода и который в некоторых режимах занижен из-за риска детонации, а теоретически оптимальный. Естественно, это приводит к увеличению КПД, и, как следствие, к увеличению тяги и одновременному уменьшению расхода. Да-да, это вовсе не сказки!
Вот упрощенная схема, которая более наглядно иллюстрирует этот эффект:
Другое дело, что эффект ощутим только в «детонационно опасных» режимах, а именно – на низких оборотах с высокой нагрузкой. В тех режимах, где фабричный УОЗ и так оптимален, нет никакой нужды его менять.Соответственно, ощутимый эффект от его правки сильно зависит от манеры езды. Кто-то замечает, кто-то – нет. Но одно могу сказать точно: модификация УОЗ совершенно точно не является обязательной.
Искрообразование в газовой среде. Еще раз о «газовых свечах».
Миф12: «Свеча для газа должна иметь меньший зазор, т.к. _______ (подставьте причину на выбор)».
Выбор свечей для автомобиля – это вообще благодатная для холивара тема, и уже немало копий сломано на тематических форумах в пользу того или иного производителя, той или иной конструкции свечи, выбора зазора и материалов ее электродов.
Снова рассмотрим рекламу «газовой» свечи, однако, сосредоточим внимание на другой части объявления.
Производитель «газовых» свечей, в частности в данном случае, эксплуатирует миф о том, что сопротивление газовоздушной среду выше, чем бензовоздушной, и требуется уменьшение зазора.
Проверим-ка это утверждение на практике. Вот снятая мною осциллограмма одной отдельно взятой искры при работе не бензине:
А вот на газе (двигатель, обороты, свеча и зазор – те же):
Что мы видим? Вроде бы как да – напряжение пробоя увеличилось на 20%. Что же, производитель прав?!
Не совсем – напряжение горения-то не изменилось. А значит – длительность разряда осталась прежней. А значит – функционально работа свечи на бензине и на газе не отличается.
Опасно ли повышение напряжения пробоя? Конечно, опасно! Да, замена бензина на газ при прочих равных увеличивает напряжение пробоя. Но намного сильнее его увеличивает повышение давления в цилиндре (при открытии дросселя). А еще сильнее – повышение давления в цилиндре при работе двигателя на чистом воздухе, например – когда двигло выкрутили до «отсечки». Да, топливо уже не поступает, но система зажигания продолжает работать. И если катушка из строя не выходит, то уж работу на газе тоже как-нибудь переживет.
Бывает так, что поврежденная система зажигания (с пробоем в проводах высокого напрчжения либо с межвитковым замыканием) «не вытягивает» работу двигателя в тяжелых условиях на газе, но справляется на бензине. В этой ситуации уменьшение зазора действительно работает, т.к. напряжение пробоя снижается, и не происходит пропуска воспламенения.
Но ничего в этом мире не дается просто так. Уменьшение зазора вызывает уменьшение объема плазмы, а это, в свою очередь, уменьшает качество воспламенения. Речь в первую очередь о времени, проходящему от возникновения искры до пика давления над поршнем. Уменьшая зазор, мы отодвигаем этот пик точно так же, как если бы выставили позднее зажигание – со всеми последствиями в виде падения КПД, снижения мощности и увеличения расхода.
Между тем, рекламируемая свеча вовсе не плохая. Она великолепно будет работать как в бензиновом, так и в газовом двигателе. Речь только о том, что и «просто бензиновая» свеча со, скажем, иридиевым электродом, тоже будет отлично работать как на бензине, так и на газе. И нет никакой необходимости бежать сломя голову в магазин, и менять свои «просто бензиновые», но классные свечи, на «особые газовые». Никакой, подчеркиваю, никакой разницы вы не увидите – просто некая сумма денег перекочует из вашего кошелька в кошелек производителя.
Ну что же, пора заканчивать. Последний:
Миф 13: «ГБО могут установить только на специализированном СТО. Установки, сделанные в кустарных условиях – все без исключения опасны»
Я сам так думал, когда газифицировал свой первый автомобиль. Я тогда вообще ничего не знал о ГБО, и доверил машинку установщикам довольно немаленькой фирмы. Я заплатил деньги, и попросил все сделать на совесть — что они и пообещали сделать. Реальность разочаровала: автомобиль жрал газ как не в себя, тупил в момент переключения. Никто ничего с этим не мог сделать – все разводили руками и футболили по разным спецам: «проверь зажигание!», «у тебя катализатор забит», «обманывают на заправках, а расход нормальный» и т.д.
Короче говоря, я на всех мастеров решил забить и сам стал разбираться. Понемногу стало приходить понимание многих вещей. Вот тогда-то я и стал потихоньку заниматься «мифологией», а именно – анализировал потихоньку доступную информацию на предмет истинности. Результат меня все больше и больше огорчал – я постепенно стал понимать, что 99% установщиков не имеют и 10 классов образования, умеют только повторять схему монтажа и жать кнопку «автокалибровка». Ни о каком глубоком понимании сути работы с их стороны речи вообще не идет. Но машинки на установку приезжают-уезжают, денежку их хозяева платят – красота! Зачем загоняться насчет всяких нюансов насчет скорости/температуры горения газа, вариаторов/прошивок и прочей ерунды? Им же не за это деньги платят!
На данный момент я имею знания и квалификацию круче чем у 99% мастеров-установщиков ГБО, которая позволила мне в 3,5 дня с нуля установить ГБО на мою теперешнюю машинку. Я учел как можно больше факторов – и удобство последующего ремонта-обслуживания, и устойчивость к заправке дерьмовым газом, и защиту от даже малейшего провала мощности в момент исчерпания газа и перехода на бензин. Удобство заправки, в конце концов. Заправочное устройство, например, расположено в лючке так, что он закрывается при закрученном переходнике, тогда как профессиональные установщики в один голос заявляли, что на моем автомобиле такого сделать невозможно. Но вот результат:
Сегодня у меня все. Как видите, я касался только тех заблуждений в сфере ГБО, которые касаются только технической части. Я специально оставил в стороне вопросы рентабельности установки ГБО, безопасности эксплуатации газированных автомобилей, вопроса престижа (точнее, антипрестижа) владения авто с ГБО и т.д.
На всякий случай подчеркну еще раз – я не профессиональный установщик ГБО. То есть, я не зарабатываю себе этим на жизнь. Пост не является рекламой, антирекламой и т.д. – я просто хочу бороться с ложными убеждениями.
Всем добра!
Чем газ вреден для двигателя автомобиля
Чего только не говорят в народе о ГБО, позволяющем заметно увеличить запас хода и сэкономить на топливе. Как правило, молва гласит о прогоревших клапанах, хотя на практике все не так однозначно и очевидно. Давайте разбираться.
Ряд экспертов считает, что сам по себе пропан-бутан совершенно безвреден для двигателя. Более того, он в определенном смысле даже полезен! Газ имеет более высокое октановое число, чем бензин (около 110 против 92-98), а, значит, снижает риск детонации. В моторе, работающем на пропан-бутане скапливается меньше нагара и отложений. Наконец, газовое топливо не попадает в картер двигателя – не меняет свойства смазочных материалов и не разжижает их.
Тогда в чем корень зла? Негативные последствия несет не топливо, а работа оборудования. Если аппаратура не настроена должным образом, то может, например, произойти тот самый прогар клапанов, страшилки о котором ходят в народе. И такое случается – лично нам известен ряд случаев, когда владельцы Chevrolet Tahoe второго поколения с ГБО «попадали» на ремонт головок блока цилиндров. Под корректной настройкой подразумевается правильное соотношение топливно-воздушной смеси. Для бензина стехиометрическое соотношение воздуха и топлива по массе равно 14,7, в то время как для пропан-бутана – 15,6. Если агрегат будет получать более обогащенную или обедненную смесь, ему грозят проблемы.
Shutterstock / VOSTOCK Photo
Довольно серьезные последствия сулит второй сценарий, когда в стехиометрической горючей смеси недостаточно, собственно, горючего. В этом случае она дольше горит, а температура в камере сгорания растет. Вот здесь-то и случается прогар клапанов. Свечам зажигания тоже приходится тяжело. Обогащенная смесь грозит прогаром выпускной системы и выходом из строя каталитический нейтрализаторов, что само по себе тоже недешево.
Иногда встречаются рекомендации подбирать соответствующее масло для двигателя, работающего на газе. Основная аргументация у дающих подобные советы следующая: поскольку температура в камере сгорания будет заметно выше, то не факт, что масло, залитое в ваш двигатель, осилит работу при более экстремальных режимах. Во-первых, ухудшится защита внутренних частей агрегата. Во-вторых, начнется закоксовка двигателя, образование отложений и нагара. И, в-третьих, есть риск увеличенного расхода масла. Возможно, иногда дела обстоят именно так, но мы можем судить по собственному опыту длительной эксплуатации автомобиля с ГБО, в который заливается самое обычное синтетическое масло и вышеописанные ужасы так и не наблюдаются. Отметим, что речь идет о возрастном автомобиле, чей безнаддувный двигатель изначально надежен и не слишком привередлив к качеству смазочного материала.
Так все ли так страшно, как гласят народные страшилки? Отнюдь! Кстати, раньше дела с надежностью работы ГБО обстояли хуже, чем сейчас. Достаточно вспомнить о первых трех поколений эжекторного типа, для которых были характерны обратные хлопки во впускном коллекторе, вызванные неправильным процессом сгорания или, проще говоря, самопроизвольным возгоранием во впускном коллекторе. Избыточное давление, создающееся в момент хлопка во впуске, может вывести из строя датчик расхода воздуха, не говоря уже о повреждении впускного тракта. У ГБО впрыскового типа, чья история началась с четвертого поколения систем, подобное отсутствует.
Процесс сгорания топлива в двигателе
При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.
Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.
Сгорание рабочей смеси в двигателях с искровым зажиганием
О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.
Процесс сгорания условно делят на три фазы.
Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.
Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.
Продолжительность первой фазы зависит от ряда факторов.
Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.
На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.
Влияние степени сжатия
При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.
Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.
Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.
Влияние угла опережения зажигания
Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.
Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.
При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.
Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.
Влияние состава рабочей смеси
Влияние частоты вращения коленчатого вала
При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.
Детонация
В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.
Основные причины появления детонации:
- применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
- повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
- увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.
На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.
Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.
Преждевременное воспламенение рабочей смеси
Воспламенение от сжатия при выключенном зажигании
Сгорание рабочей смеси в дизелях
Период сгорания топлива в цилиндре дизеля условно делят на три фазы:
Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.
Период задержки воспламенения
За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.
Рассмотрим влияние каждого фактора на величину Qi.
Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.
Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.
Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.
Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.
Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.
Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.
Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.
Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.
Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.
Какова температура горения бензина?
Любой, кто решит отыскать информацию о температуре кипения, горения или вспышки бензина обнаружит интересную вещь: даже в довольно авторитетных источниках между указываемыми значениями одного и того же параметра наблюдается существенная разница. Почему так происходит и каковы реальные величины?
Что нужно знать о техническом пропане?
Пропан технический представляет собой органическое вещество, относящееся к классу алканов. Он может быть природным и техническим, который образуется во время крекинга нефтепродуктов. Пропан известен как один из самых ядовитых газов.
Температура пламени
Температура пламени
Пропан технический: свойства
Среди основных параметров вещества стоит отметить следующие:
- сумма пропилена и пропана составляет не менее 75 % от всего объема (количество последнего не нормируется);
- сумма бутанов и непредельных углеводородов — не нормируется;
- количество жидкого остатка не должна превышать 0,7 % об.;
- давление насыщенных паров при температуре – 20 ◦С должно быть не менее 0,16 МПа;
- количество сероводорода и меркаптановой серы не должна превышать 0,013 % от всего объема;
- интенсивность запаха пропана должна превышать 3 балла.
Минимальная температур горения пропана составляет — 35 °C. Благодаря этому работать с газом можно в любых условиях. Самовоспламеняется пропан, при нормальном атмосферном давлении, при температуре в 466 °C. При 97 °C возникает критическая температура пропана. Температура горения пропан-бутана колеблется от 800 до 1970 °С, пламя сгорания чистого пропана имеет температуру около 2526 °C, а жаропроизводительность, в среднем, составляет 2110 °C. В газовых резаках, при смеси с кислородом от 1:4 до 1:5 (пропан:кислород), возникает температура пламени до 2830 °C.
Температура пламени
- Температура воспламенения для большинства твёрдых материалов — 300 °С.
- Температура пламени в горящей сигарете — 250–300 °С.
- Температура пламени спички 750–1400 °С; при этом 300 °С — температура воспламенения дерева, а температура горения дерева равняется примерно 500–800 °С.
- Температура горения пропан-бутана — 800–1970 °С.
- Температура пламени керосина — 800 °С, в среде чистого кислорода — 2000 °С.
- Температура горения бензина — 1300–1400 °С.
- Температура пламени спирта не превышает 900 °С.
- Температура горения магния — 2200 °С; значительная часть излучения в УФ-диапазоне.
Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.
Использование технического пропана
Технический пропан может быть использован в следующих сферах:
- в качестве топлива для грузовиков, при выполнении работ разного характера в промышленности;
- в строительстве: для резки металлолома, сварки, во время кровельных работ, для разогрева асфальта, для обогрева помещений;
- в быту для приготовления пищи, отопления дома, подогрева воды;
- в пищевой и химической промышленности для растворителей или в качестве пищевой добавки, известной как Е944.
Классификация
Пламя классифицируют по:
- агрегатному состоянию горючих веществ: пламя газообразных, жидких, твёрдых и аэродисперсных реагентов;
- излучению: светящиеся, окрашенные, бесцветные;
- состоянию среды горючее–окислитель: диффузионные, предварительно перемешанных сред (см. ниже);
- характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
- температуре: холодные, низкотемпературные, высокотемпературные;
- скорости распространения: медленные, быстрые;
- высоте: короткие, длинные;
- визуальному восприятию: коптящие, прозрачные, цветные.
Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):
- тёмная зона (300—350 °C), где горение не происходит из-за недостатка окислителя;
- светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500—800 °C);
- едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900—1500 °C).
Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.
Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей — от 0,03 до 15 м/с.
Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении — до 100 м/с; при взрывном горении — от 300 до 1000 м/с; при детонационном горении — свыше 1000 м/с.
Пламя горящей свечи сопровождало человека тысячи лет.
Окислительное пламя
Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются.
Восстановительное пламя
Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.
Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO4. С помощью платиновой петли забирают BaSO4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным.
Цвет пламени зависит от нескольких факторов. Наиболее важны: температура, наличие в пламени микрочастиц и ионов, определяющих эмиссионный спектр.
Отличие пропана от метана
Среди отличительных особенностей пропана стоит отметить:
- более высокая эффективность при сгорании, благодаря чему он намного эффективнее метана во время проведения сварочных работ;
- высокая инертность газа, что позволяет ему более активно вступать в разнообразные химические реакции;
- пропан безопаснее метана и отличается наличием наркотического действия;
- при транспортировке пропана не нужно использовать какое-то специальное оборудование, достаточно обычных стальных баллонов.
Кроме этого, пропан является более дешевым и легче заправляется.
Применение
Пламя (окислительное и восстановительное) используется в аналитической химии, в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки.
Особенности хранения
Для хранения и перевозки пропана используют металлические баллоны, которые окрашены в ярко0красный цвет. Их нельзя размещать в условиях слишком низких или слишком высоких температур, так как возможно изменения агрегатного стана вещества и появляется риск взрыва.
Как видим, пропан – это невероятны полезное вещество, применяемое в самых разных сферах, при работе с которых нужно знать массу нюансов и правила безопасной эксплуатации.
Газ (фр. gaz, от греч. chaos – хаос), агрегатное состояние вещества, в котором оно равномерно заполняет весь предоставленный ему объем.
В тридцатые годы прошлого века англичанин Барнетт получил патент на газовый двигатель, а в 1860 году француз Э. Ленуар построил мотор, работающий на смеси воздуха и газа. Такой выбор горючего никого не удивил – бензина еще не было.
Бензин в качестве горючего был использован спустя два десятилетия, когда Г. Даймлер создал бензиновый двигатель внутреннего сгорания. Бензиновый мотор заменил лошадь в первых «самодвижущихся колясках» – автомобилях.
Повсеместный рост количества автомобилей потребовал значительного увеличения объемов производства бензина. О газе как о возможном моторном топливе надолго забыли. Лишь через 100 лет после Барнетта, в конце тридцатых годов нашего столетия, возродилась мысль о его использовании. Тогда появились первые газогенераторные автомобили. Газ вырабатывался в топке, а оттуда подавался в двигатель.
Бензин дорожает, и сегодня его пытаются заменить. И природным газом, и синтезированными газами и жидкостями, например – спиртом, который гонят из самого разного сырья: от тростника до апельсиновых корок.
Все эти виды топлива менее опасны для окружающей среды, чем бензин.
Пламя в условиях невесомости
В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры, поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.
В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.
Октановое число 105?
Исследования опровергли устоявшееся мнение, что использование газа вместо бензина – вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше.
Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца.
В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) – токсичное для человека вещество.
И газовые, и бензиновые автомобили выбрасывают в атмосферу одинаковое количество углеводородов. Для здоровья человека опасны не сами углеводороды, а продукты их окисления. Двигатель, работающий на бензине, выбрасывает сравнительно легко окисляющиеся вещества – этил и этилен, а газовый двигатель – метан, который из всех предельных углеводородов наиболее устойчив к окислению. Поэтому углеводородный выброс газового автомобиля менее опасен (см. рис. 1.5 книги «Источники энергии»).
Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам.
Двигатель внутреннего сгорания автомобиля работает по классическому четырехтактному циклу. Газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень и двигает шатунный механизм, а затем выбрасывается из цилиндра.
Чем сильнее можно сжать топливо без возникновения детонации*, тем больше мощность двигателя. Антидетонационную способность топлива определяют октановым числом. Чем оно выше, тем лучше топливо. Среднее октановое число природного газа – 105 – недостижимо для любых марок бензина.
* Детонация – распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе.
Двигатель внутреннего сгорания работает на смеси воздуха и распыленного топлива. Для воспламенения смеси нужна определенная концентрация топлива. Газ, в сравнении с бензином, горит при меньших концентрациях, т.е. при более «бедных» смесях. В случае повышения концентрации газа и обогащения смеси можно добиться увеличения мощности двигателя. Обедняя смесь, наоборот, можно понизить мощность. Возникает возможность изменением состава смеси регулировать мощность двигателя: газ как топливо значительно «послушнее» бензина.
Эксплуатация показала, что автомобили на газе более выносливы – в полтора-два раза дольше работают без ремонта. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Кроме того, масляная пленка дольше держится на металлических поверхностях – ее не смывает жидкое топливо, и, наконец, газ практически не вызывает коррозию металла.
Несмотря на многочисленные достоинства природного газа, закрывать заправочные станции и выбрасывать бензиновые канистры еще рано.
Метан
В переходе на газовое топливо есть свои сложности. Так, например, плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20. 25 МПа (200. 250 атмосфер). Для хранения в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.
Природный газ-метан способен резко уменьшать объем (в 600 раз) при его низкотемпературном cжижении. Такой жидкий газ можно перевозить в специальных «бензобаках» при давлении не более 6 атмосфер (давление воды в водопроводном кране). Имеется множество технических разработок и патентов по реализации такой технологии получения жидкого метана. Во всем мире уже производится и потребляется много миллионов тонн охлажденного (до температуры около –120°C) метана. Крупнейшими производителями является Индонезия, Алжир, Ливия, США, Норвегия и т.д. Для перевозки используются танкеры-метановозы водоизмещением до 120 000 тонн (Япония). Продуктами полного сгорания метана являются безвредные вещества – углекислый газ и вода. Именно поэтому мы не испытываем неудобств на наших кухнях, где иногда целый день горят газовые (метановые) горелки.
Пропан-бутан
Пропан-бутан – синтетическое топливо. Его получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). Газобаллонная аппаратура для сжиженного пропан бутана несколько проще. Процесс заправки машин на газонаполнительных станциях несложен и очень похож на заправку бензином.
По своим свойствам сжиженный пропан-бутан почти не отличается от сжатого природного газа. То же высокое октановое число, те же неплохие экологические и эксплуатационные показатели. Есть у сжиженного пропан бутана и преимущество перед метаном – 225 литров этого горючего хватает на пробег около 500 километров, а метана, помещающегося в восьми баллонах – на вдвое меньший. На сжиженном газе работает вдвое меньше машин, чем на сжатом и вот почему. Пропан бутана получают в 20. 25 раз меньше, чем добывают природного газа.
Читайте также: