Температура остаточных газов для дизельных двигателей
Температура выхлопных газов дизельного двигателя на выходе глушителя
Каждые пять лет в Европе принимают новые экологические нормы. Как назло, наибольшие ужесточения касаются тех выбросов, которые более характерны для дизеля, — речь об оксидах азота и твердых частицах. От Евро‑3 до Евро‑6 допустимый уровень понизили соответственно в восемь и десять раз.
Даже при нормальном сгорании дизельного топлива неизбежно образование твердых частиц — сажи. А режимов неполного сгорания предостаточно, причем в каждом выбросы сажи повышаются многократно. Пресловутые оксиды азота образуются в камере сгорания при высокой температуре и большом избытке воздуха в топливовоздушной смеси, на котором, собственно, и работает дизельный двигатель. Из-за этого же избытка воздуха привычный нейтрализатор не способен их обезвреживать.
Для начала инженерам пришлось внедрить систему рециркуляции отработавших газов (EGR), которая направляет часть их обратно на впуск. Многие думают, что это нужно просто для дожигания выхлопных газов. Отчасти так, но основная задача — снизить количество кислорода в свежей топливо‑ воздушной смеси и сбить температуру сгорания в цилиндре. Иногда системой рециркуляции снабжают и бензиновые двигатели. У дизеля она состоит из управляющего клапана, охладителя потока газов и впускного запорного клапана.
Управляющий клапан EGR установлен на стороне выпуска и отводит отработавшие газы (ОГ) обратно на впуск. Его работой заведует модуль управления двигателем. Также в клапан встроен датчик положения. Предусмотрена функция самоочистки: при выключении двигателя клапан несколько раз открывается и закрывается. При выходе из строя системы EGR он остается закрытым. Однако нередки случаи, когда отложения сажи и коррозия со временем приводят к залипанию клапана в открытом положении. Дизельный мотор и так не отличается внутренней чистотой, вдобавок постоянно на впуск будет возвращаться полная порция ОГ, что снизит ресурс элементов двигателя и его мощность.
Охладитель EGR работает как интеркулер в системах наддува. Охлажденные газы имеют бóльшую плотность, а значит, влекут больший расход. Дополнительно они еще сильнее сбивают температуру сгорания в цилиндре. В некоторых режимах двигателя такая интенсивная рециркуляция во вред: она ведет к неполному сгоранию топлива — например, при пуске и в режиме прогрева. Чтобы избежать этого, в систему встроен клапан, который направляет газы в обход охладителя и дополнительно предохраняет его от осаждения конденсата из-за слишком низкой температуры.
Впускной запорный клапан — не что иное, как дроссельная заслонка, которая стоит во впускном тракте перед каналом подачи отработавших газов. При необходимости она закрывается почти наполовину, уменьшая поперечное сечение впускного трубопровода. За счет этого во впускном коллекторе создается разрежение и растет интенсивность рециркуляции ОГ. По факту для работы самогó двигателя она не используется, за исключением момента его более мягкой остановки, когда заслонка полностью закрывается и прекращает подачу воздуха. У дизеля — качественное регулирование топливовоздушной смеси, то есть меняются только параметры впрыска топлива. При отказе заслонка полностью открывается. Функция само‑ очистки срабатывает после выключения двигателя, когда дроссель несколько раз полностью открывается и закрывается.
О неисправности системы рециркуляции отработавших газов сигнализирует лампа Сheck. Диагностику проводят в основном с помощью компьютера. Хорошее самочувствие системы да и самого мотора продлят периодические поездки за город без пробок, дабы немного очистить их от нагара, а также применение рекомендованного моторного масла и заправка на проверенных АЗС. Продукты сгорания сомнительной солярки и дешевого масла бумерангом вернутся в двигатель.
Достоинства и недостатки дизельного мотора
Теперь же следует сказать пару слов обо всех плюсах и минусах подобных конструкций. Начнем с положительных сторон. Моторы данного типа работают практически на любом горючем, поэтому к качеству последнего не предъявляются какие-либо серьезные требования, более того, с увеличением его массы и содержания атомов углерода повышается и теплотворная способность движка, а, следовательно, и его эффективность. Его КПД иногда переваливает за отметку 50%.
Автомобили с такими моторами более «отзывчивые», а все благодаря высокому значению вращающего момента на низких оборотах. Поэтому такой агрегат приветствуется на моделях спортивных машин, где нельзя не газовать от души. Кстати, именно этот фактор поспособствовал широкому распространению данного типа мотора на большие грузовые авто. Да и количество СО в составе выхлопных газов дизельных моторов значительно ниже, чем у бензиновых, что также является несомненным преимуществом. Кроме того, они намного экономичнее, да и раньше топливо стоило значительно ниже бензина, хотя на сегодняшний день их цены практически сравнялись.
Трубочист
Дальше экологи начали сильно прижимать двигателистов насчет выбросов сажи. Для этого окислительный нейтрализатор, который борется с выбросами СО и СН, дополнили дизельным сажевым фильтром (DPF). Чаще их объединяют в одном корпусе, но встречаются и раздельные конструкции.
Фильтр DPF напоминает обычный нейтрализатор. Разница в том, что он именно накапливает в себе частицы сажи и производит их дожигание — регенерацию. Для процесса нужна температура около 600 градусов. При обычных условиях температура отработавших газов дизеля — от 150 до 300 ºС, а воздействием на управление двигателя ее можно поднять только до пятисот. Проблему решают двумя путями. Следуя первым, каналы фильтра покрывают платиной. Этот каталитический слой снижает температуру сгорания сажи до нужных 500º и ускоряет сам процесс. Второй путь — использовать в качестве катализатора присадку к топливу, для которой предусмотрен небольшой дополнительный бак.
После регенерации остаются зольные остатки, которые заполняют фильтр. Образуются они из моторного масла и топлива, преобразовать их во что-либо невозможно. Полезный объем фильтра уменьшается, сокращаются интервалы регенерации. Фильтр, забитый окончательно, заменяют.
Фильтр с каталитическим слоем дополнен датчиком разности давлений, датчиками температуры отработавших газов и лямбда-зондом. Датчик давления определяет разницу давлений ОГ до и после фильтра DPF. По разности давлений определяется количество накопленной сажи: чем она больше, тем сильнее забит фильтр. По этому же параметру оценивается состояние самого фильтра. Слишком сильный перепад давлений «мозг» двигателя расценивает как засорение фильтра, зажигает лампу Check и переходит в аварийный режим работы. Аналогично он поведет себя и в случае слишком низкого перепада, приписав его повреждению фильтра. Также сигнал датчика служит для контроля процесса регенерации.
В зависимости от сложности системы используют от двух до трех датчиков температуры ОГ, размещенных на корпусе фильтра. Передний датчик на входе в окислительный нейтрализатор определяет, достигнута ли его рабочая температура. Средний — на входе фильтра DPF — сигнализирует о температуре, необходимой для регенерации. Задний (в более простых системах не используют) ставят на выходе для контроля температуры выхлопных газов в процессе. По показаниям рассчитывается количество сгоревшей сажи.
Лямбда-зонд находится за сажевым фильтром, его показания нужны для более точного определения количества сгоревшей сажи.
Система с топливной присадкой устроена и работает по похожему принципу. В ней нет лямбда-зонда и только один датчик температуры ОГ. В зависимости от уровня топлива из дополнительной емкости (примерно на пару литров) в основной бак впрыскивается присадка. При работе двигателя она, осаждаясь на частицах сажи в фильтре DPF и его каналах, выступает как катализатор. За регенерацию отвечает блок управления двигателем. Когда уровень накопления сажи превышает 60%, «мозг» начинает искать подходящие условия движения. Обычно это скорость от 40 км/ч при оборотах свыше 2000. В таких условиях различными способами (как правило, это дополнительный впрыск и закрытие управляющего клапана EGR) температура ОГ повышается до 500º. Запущенный процесс контролируется датчиками давления и температуры, так как разогрев свыше 1000º может повредить фильтр DPF.
В идеальных условиях полная регенерация занимает 15 минут. (Не паникуйте, если вдруг из выхлопной трубы пойдет белый дым, а потом так же неожиданно исчезнет: это своеобразный побочный эффект.) Характерных интервалов ее проведения нет, так как каждый автомобиль эксплуатируют по-своему.
Однако в реальных условиях всё сложнее. Постоянная езда в пробках на короткие расстояния препятствует нормальной регенерации. Она может стартовать неоднократно и ни разу не завершиться. Рано или поздно система начинает просить помощи.
При достижении накоплений сажи в 80% загорается сигнальная лампа DPF. В этом случае еще есть надежда на автоматическое протекание процесса, если поездить продолжительное время вне пробок. При 100‑процентной заполненности лампа начинает постоянно мигать. В блоке управления двигателя сохраняется ошибка, и он переходит в аварийный режим с ограничением впрыска топлива. В этом случае следует ехать в сервис, где проведут регенерацию вручную с помощью диагностического компьютера. Но если пропустить и это предупреждение… Когда накопления сажи достигнут 140%, загорается Check — двигатель еще сильнее придушен, однако принудительную регенерацию все еще можно выполнить. При 200% фильтр уже не спасти. А ведь его цена доходит до 100 000 рублей…
Без компьютера диагностику системы не произвести. Для ее нормальной работы требуется качественное топливо с низким содержанием серы и периодическая езда вне пробок. Любые металлосодержащие присадки приводят к повышенному образованию золы в сажевом фильтре и сокращению интервалов регенерации.
Тройной тулуп
При дополнительной подаче топлива в процессе регенерации оно попадает в моторное масло, вызывая его разжижение. Поэтому на масляном щупе дизельного двигателя иногда можно увидеть три метки: две привычные (минимум и максимум) и еще метка максимального уровня разжижения.
Модуль управления двигателем способен сам рассчитывать уровень разжижения по продолжительности и интервалам регенерации. По достижении определенного порога на щитке появляется та или иная индикация.
Полностью полагаться на электронику не стоит, нужно периодически контролировать уровень по щупу. Даже не достигнув предела разжижения, масло заметно теряет свои эффективные свойства, а продукты его сгорания дополнительно забивают сажевый фильтр. Не ждите до последнего и замените масло пораньше. При наличии DPF нужно использовать масло с пониженной зольностью, иначе интервалы регенерации с повышением расхода будут сокращаться, а масло, следовательно, станет еще быстрее терять плотность.
Особенности дизельного двигателя
Итак, прежде чем затрагивать какие-либо конкретные параметры, следует определиться, что же, вообще, представляет собой дизельный двигатель. История данного типа моторов начинается в далеком 1824 году, когда известный французский физик выдвинул теорию о том, что можно произвести нагрев тела до необходимой температуры путем изменения его объема. Другими словами, осуществив стремительное сжатие.
Однако практическое применение этот принцип нашел спустя несколько десятилетий, и в 1897 году был выпущен первый в мире дизель-мотор, его разработчиком является немецкий инженер Рудольф Дизель. Таким образом, принцип работы подобного двигателя заключается в самовоспламенении распыленного топлива, взаимодействующего с разогретым в процессе сжатия воздухом. Сфера применения такого мотора довольно обширна, начиная со стандартных автомобилей, грузовиков, сельскохозяйственной техники и заканчивая танками и судостроением.
Дорога в ад
Очередное предписание снизить выбросы оксидов азота заставило инженеров еще больше усложнить дизельный мотор. А ведь некоторые уже дошли до предела возможностей ограничивать их образование в цилиндре двигателя. Знакомьтесь: система селективной каталитической нейтрализации (SCR). Увидеть ее можно не только на грузовиках, но и, к примеру, на дизельном кроссовере «Мазда СХ‑7», предназначенном для европейского рынка. В выхлопную систему добавили еще один нейтрализатор-преобразователь и бак с присадкой — карбамидом (мочевиной). Этот раствор AdBlue впрыскивается в нейтрализатор и превращает оксиды азота в безвредные вещества.
Преобразователь состоит из двух частей: цеолитного нейтрализатора и нейтрализатора проскальзывания. Цеолит — это каталитическое покрытие, благодаря которому происходит реакция между карбамидом и оксидами азота. При этом выделяется аммиак, он и нейтрализует оксиды. Иногда непрореагировавший аммиак проходит дальше. Для его обезвреживания служит вторая часть — нейтрализатор проскальзывания. Смеситель перед преобразователем SCR обеспечивает почти равномерное распределение карбамида в потоке ОГ и помогает его испарению.
Датчик NОx (оксидов азота) контролирует очистку ОГ. Работает он аналогично кислородному датчику. Причем подключен к отдельному модулю управления и представляет с ним единый блок.
В бак для AdBlue объемом 15 литров встроены насос и подогреватель. Сам раствор безвреден, но начинает замерзать уже при —11º. По регламенту его надо пополнять и иногда обновлять. Форсунка стоит перед нейтрализатором SCR и впрыскивает карбамид на смеситель. Управляет работой системы отдельный модуль. Индикация SCR в основном связана с малым количеством жидкости. При неисправности она дополняется «чеком». В некоторых случаях возможна блокировка пуска двигателя.
Как и в других системах, диагностика возложена на компьютер. Система очень требовательна к качеству топлива, потому-то бóльшая часть проблем именно из-за него.
Итак, вывод. Следите за лампочками на щитке, не экономьте на топливе и маслах, время от времени выводите машину на загородную прогулку и не ленитесь проверять уровень масла — тогда ваша совместная жизнь продлится дольше.
Температура выхлопных газов бензинового двигателя в коллекторе
Рукомойник?
В большинство топливных фильтров дизелей встроен датчик уровня воды. Она попадает в топливо различными путями и ведет к коррозии элементов топливной аппаратуры. Плотность воды выше плотности солярки, поэтому она скапливается в нижней части фильтра. Поплавковый датчик известит о ее переполнении. Для слива предусмотрены болт или крышка.
В некоторые фильтры встраивают подогреватель. С легкой парафинизацией солярки в мороз он справится, но только если топливо изначально зимнее.
Иногда на корпусе фильтра встретите ручной насос для прокачки системы, глотнувшей воздуха.
Универсальный фен
Большинство дизельных двигателей наддувные. Турбины в них довольно хитрые: их изменяемую геометрию каждый производитель видит по-своему.
Одни встраивают в корпус направляющие лопатки, которые могут менять проходное сечение канала ОГ перед колесом турбины. За счет этого получается постоянное давление наддува в широком диапазоне оборотов. Другие пошли еще дальше, встроив в один большой корпус две турбины — высокого и низкого давления.
В дизельном двигателе турбина термически меньше нагружена, чем в бензиновом. Но бензиновые правила продления жизни этого узла работают и здесь. Не глушите мотор сразу после остановки. Если перед этим была езда с высокой нагрузкой или вовсю шла регенерация, то температура ОГ может быть очень высокой. Можно, кстати, поставить турботаймер, поручив заботу ему.
Подсвечник
Для облегчения старта в холодную погоду служит предпусковой подогрев. Специальные свечи за пару секунд нагревают камеру сгорания до 1000º. Благодаря этому облегчается испарение топлива и возгорание смеси. Но, к сожалению, неисправность даже одной из них может поставить крест на удачном пуске.
В настоящее время свечи работают в трех режимах: привычный предпусковой подогрев, сопровождающий и режим регенерации DPF. Сопровождающий режим используется на холодном моторе и длится около четырех минут. Нужен он в основном для снижения вредных выбросов. В режиме регенерации свечи могут дополнительно увеличивать температуру ОГ. Продлить их жизнь не в нашей власти, а потому лишь посоветуем не торопиться сразу пускать мотор: лучше выждать несколько секунд после того, как погаснет их индикация на щитке.
Рабочая температура двигателя зимой – как стартовать правильно?
Наверняка не только владельцы транспортных средств, на которых стоит дизельный мотор, знают, что автомобиль следует прогреть несколько минут перед началом движения, особенно это актуально в холодное время года. Итак, рассмотрим особенности данного процесса. Первыми подвергаются нагреву поршни и только потом уже блок цилиндров. Поэтому температурные расширения этих деталей отличаются, а не разогревшееся до нужной температуры масло имеет густую консистенцию и не поступает в необходимом количестве. Таким образом, если начать газовать на недостаточно прогретом авто, то это негативно скажется на резиновой прокладке, расположенной между вышеуказанными деталями и элементами двигателя.
Хитрая масленка
Индикация высокого разжижения масла зависит уже от конкретного автомобиля. Это может быть лампа DPF, привычная масленка или конкретное текстовое предупреждение. На некоторых машинах встречаются отдельные датчики высокого и низкого уровня масла. Когда индикация уже появилась, двигатель может перейти в аварийный режим работы с ограничением мощности.
После каждой замены масла следует с помощью компьютера сообщить об этом «мозгу» двигателя, выполнив перенастройку расчета разжижения
Влияние низко- и высокотемпературной рециркуляции ОГ на рабочий процесс ДВС Текст научной статьи по специальности «Химические технологии»
Аннотация научной статьи по химическим технологиям, автор научной работы — Гусаков С. В., Вальехо Мальдонадо П.Р., Довольнов А. М.
Рассмотрено влияние температуры рециркулирующих отработавших газов (ОГ) на параметры рабочего процесса в поршневых двигателях. Рециркуляция ОГ важна не только как один из методов снижения токсичности отработавших газов ДВС, но и способ управления рабочим процессом двигателей с самовоспламенением гомогенного заряда (HCCI).
Похожие темы научных работ по химическим технологиям , автор научной работы — Гусаков С. В., Вальехо Мальдонадо П.Р., Довольнов А. М.
Influence low- and high temperature EGR to working process ice
Influence of temperature exhaust gases recirculation (EGR) on parameters of working process in piston engines is considered. EGR it is important not only as one of methods of reduction toxicity of exhaust gases to ICE, but also a way of management of working process of engines with homogeneous charge compression ignition.
Текст научной работы на тему «Влияние низко- и высокотемпературной рециркуляции ОГ на рабочий процесс ДВС»
ВЛИЯНИЕ НИЗКО- И ВЫСОКОТЕМПЕРАТУРНОЙ РЕЦИРКУЛЯЦИИ ОГ НА РАБОЧИЙ ПРОЦЕСС ДВС
С.В. Гусаков, П.Р. Вальехо Мальдонадо, А.М. Довольнов
Кафедра комбинированных ДВС Российский университет дружбы народов Ул. Миклухо-Маклая, 6, Москва, Россия, 117198
Рассмотрено влияние температуры рециркулирующих отработавших газов (ОГ) на параметры рабочего процесса в поршневых двигателях. Рециркуляция ОГ важна не только как один из методов снижения токсичности отработавших газов ДВС, но и способ управления рабочим процессом двигателей с самовоспламенением гомогенного заряда (HCCI).
В последние десятилетия рециркуляция отработавших газов все шире применяется для снижения токсичности отработавших газов (в основном для снижения выбросов оксидов азота NOx) как двигателей с искровым зажиганием, так и дизелей. В двигателях с традиционными рабочими процессами, как правило, реализуется схема подвода отработавших газов по внешнему трубопроводу, соединяющему выпускной и впускной коллекторы. Изменение количества рециркулирующих газов осуществляется специальным клапаном по сигналам блока электронного управления двигателя в зависимости от скоростного, нагрузочного режимов работы и других параметров ДВС. Отработавшие газы, проходя по системе рециркуляции, охлаждаются, и в этом случае можно говорить о низкотемпературной рециркуляции. Эффект от подмешивания к свежему заряду отработавших газов — продуктов сгорания с низкой температурой при этом можно рассматривать как разбавление свежей смеси инертным газом, в основном состоящем из азота, диоксида углерода и паров воды. В результате увеличения балласта снижается температура горения топлива и, как следствие, уменьшаются выбросы с ОГ оксидов азота, термический механизм образования которых является превалирующим в условия ДВС.
В двигателях с HCCI-процессом, в котором реализуется самовоспламенение от сжатия, предварительно подготовленной топливовоздушной смеси, также применяется рециркуляция ОГ, однако при этом преследуются другие цели. Условием организации HCCI-процесса является высокая температурная и концентрационная однородность смеси перед воспламенением, вследствие чего реакции самовоспламенения протекают практически одновременно по всему объему камеры сгорания. Скорость сгорания, определяемая только кинетикой химических реакций, очень высока, и все поданное в двигатель топливо окисляется за крайне малый угол поворота коленчатого вала (ПКВ), который составляет на большинстве режимов работы менее 10 град ПКВ. При малых значениях коэффициента избытка воздуха это приводит к недопустимо высоким значениям скорости нарастания давления и максимального давления цикла. Добавка инертного разбавителя (рециркуляция ОГ) снижает скорость тепловыделения, позволяя увеличить мощность двигателя без превышения допустимых нагрузок на кривошипно-шатунный механизм двигателя.
Однако есть еще один аспект применения рециркуляции ОГ в двигателях с НСС1-процессом. Дело в том, что в области получения высоких индикаторных показателей рабочего цикла ДВС с самовоспламенением гомогенного заряда важной проблемой является обеспечение оптимального расположения процесса тепловыделения по углу ПКВ относительно ВМТ конца сжатия. Отсутствие таких управляющих факторов, как угол опережения зажигания в двигателях с принудительным воспламенением или угол опережения впрыскивания топлива в дизелях, требует поиска иных методов воздействия на момент начала активного тепловыделения при самовоспламенении гомогенной смеси.
Анализируя решение дифференциального уравнения саморазогрева смеси при тепловом взрыве, полученное О.М. Тодесом — зависимость периода задержки воспламенения в функции температуры Т, давления р, условной энергии активации топлива Е и порядка реакции п
можно выбрать факторы, позволяющие управлять периодом индукции, а следовательно, и смещением самовоспламенения относительно ВМТ. Условная энергия активации является характеристикой топлива, определяющей его склонность к самовоспламенению, что, в свою очередь, зависит от химического состава топлива. Известны вещества, добавление которых снижает склонность топлив к самовоспламенению (антидетонаторы), например тетраэтилсвинец, и вещества, способствующие самовоспламенению (промоторы), например, формальдегид, перекиси и др. Продукты сгорания углеводородного топлива, имеющие температуру к концу такта расширения порядка 1000 К и более, содержат большое количество активных радикалов и промоторов воспламенения, которые, будучи сохранены в цилиндре, в последующем цикле сыграют роль активаторов самовоспламенения, понизив эффективную энергию активации топлива. Таким образом, осуществив высокотемпературную рециркуляцию, можно воздействовать на момент воспламенения как через температурный фактор, так и через химический, причем их действие направлено в одном направлении. Чем выше количество рециркулирующих ОГ, тем выше температура смеси и концентрация активных молекул, что в обоих случаях ведет к сокращению периода задержки воспламенения.
Проанализировать влияние температурного фактора достаточно просто. Температура смеси в начале такта сжатия Та, зависящая от температуры на впуске Т0, подогрева смеси АТ, коэффициента остаточных газов уг с температурой Тг и коэффициента рециркуляции остаточных газов уЕСК с температурой ТЕОК, равна
Принимая воспламенение происходящим в ВМТ, имеем температуру для расчета периода задержки воспламенения по зависимости = А • р—п-1) • еЕ/Кт, считая, что давление в начале сжатия ра не зависит от степени рециркуляции
где 8 — степень сжатия, п — показатель политропы сжатия.
Теплота сгорания топливовоздушной смеси, разбавленной отработавшими газами HUs и адиабатическая температура пламени ТПС, равны
где: а — коэффициент избытка воздуха; /0 — стехиометрическое количество воздуха; Ни — низшая теплота сгорания топлива; с8 — массовая теплоемкость смеси.
На рис. 1 приведены расчетные графики, иллюстрирующие влияние температуры и степени рециркуляции ОГ на период задержки воспламенения.
Степень рециркуляции ОГ, %
ТЕан = 400К . Теон = 800 К
ТЕен = 600 к ---------ТЕен = 1000 К
Рис. 1. Влияние степени рециркуляции на температуру конца сжатия и период задержки воспламенения для различной температуры рециркулирующих ОГ
Как видно из приведенных графиков, наблюдается естественный эффект снижения периода задержки воспламенения при увеличении степени рециркуляции и повышении температуры рециркулирующих ОГ. Однако влияние температуры ТШ>( на адиабатическую температуру продуктов сгорания не столь однозначно (рис. 2).
При низкотемпературной рециркуляции (ТЕШ = 400 К, рис. 2а), с увеличением степени рециркуляции ОГ наблюдается снижение температуры продуктов сгорания во всем диапазоне изменения коэффициента избытка воздуха топливовоздушной смеси. При высокотемпературной рециркуляции (ТЕШ = 1000 К, рис. 2б) в области средне обогащенных и бедных смесей (а = 2,5—5,5) прослеживается обратный эффект — адиабатическая температура пламени увеличивается.
К°эффИцие2^Тиз3,^4,5 5,5 0
Рис. 2. Влияние температуры рециркулирующих ОГ (ТЕвп) на адиабатическую температуру продуктов сгорания в зависимости от коэффициента избытка воздуха и степени рециркуляции (ЕвП):
Фазы газораспределения • СО А НС ■ ЫОх
Рис. 3. Влияние «внутренней рециркуляции» на эмиссию вредных веществ с ОГ [1]
а — ТЕвп = 400 К; б — ТЕвп = 1000 К
[1] Persson H., Agrell M., Olsson J., Johansson B., Strom H. The effect of intake temperature on hcci operation using negative valve overlap, SAE Paper 2004-01-0944.
INFLUENCE LOW- AND HIGH TEMPERATURE EGR TO WORKING PROCESS ICE
S.V. Gusakov, P.R. Vallejo Maldonado, A.M. Dovolnov
Departament of Internal Combustion Engines Peoples’ Friendship University of Russia
Miklukho-Maklaya str., 6, Moscow, Russia, 117198
Influence of temperature exhaust gases recirculation (EGR) on parameters of working process in piston engines is considered. EGR it is important not only as one of methods of reduction toxicity of exhaust gases to ICE, but also a way of management of working process of engines with homogeneous charge compression ignition.
Как температура и давление в цилиндрах дизеля влияют на работу мотора
Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.
Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.
После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.
Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.
Камеры сгорания дизельных двигателей и особенности работы такого ДВС
Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:
- неразделенная камера сгорания дизельного мотора;
- разделенная камера сгорания дизельного ДВС;
Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.
Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.
Как сгорает топливо в дизельном двигателе
Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.
В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.
Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.
В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.
Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.
Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:
- Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.
Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.
Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.
- Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.
Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.
- Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.
Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.
- Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.
Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т.д.
Частые проблемы дизелей: момент впрыска и компрессия
Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.
Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.
При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.
Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему
То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.
Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.
Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.
Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.
Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.
В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.
Что в итоге
С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.
Рекомендуем также прочитать статью о том, почему в двигателе может быть повышенная компрессия. Из этой статьи вы узнаете об основных причинах возникновения данного отклонения от нормы и способах ремонта.
По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск, подавая дизтопливо до 10 раз за один рабочий такт мотора.
Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.
Показатель компрессии дизельного двигателя. Главные причины и основные признаки снижения компрессии. Запуск мотора с недостаточным давлением в цилиндрах.
Высокая компрессия в двигателе и основные причины повышения компресссии. Почему также происходит снижение компресссии по цилиндрам. Советы и рекомендации.
Влияние степени сжатия на мощность и другие характеристики мотора. Тюнинг и увеличение степени сжатия, а также понижение параметра в отдельных случаях.
Почему топливно-воздушная смесь детонирует в камере сгорания. Причины, вызывающие детонацию. Последствия детонационного сгорания топлива в цилиндрах ДВС.
Низкая комрессия в цилиднрах двигателя: главные причины. Как поднять компрессию в двигателе без ремонта мотора, доступные способы. Советы и рекомендации.
Проблемы с запуском дизеля. Признаки низкой компрессии и причины неисправности: ГРМ, зеркало цилиндров, поршень и кольца. Производим замер компрессии.
Давление и температура окружающей среды
При работе двигателя без наддува в цилиндр поступает воздух
из атмосферы. В этом случае при расчете рабочего цикла двигателя давление окружающей среды p0 принимается равным 0,1 МПа, а тем-пература T0 = 293 К.
При работе двигателей с наддувом воздух в цилиндр поступает
из компрессора (нагнетателя), где он предварительно сжимается. Давление и температура окружающей среды при расчете рабочего
цикла двигателя с наддувом принимаются равными давлению pк
и температуре Tк воздуха на выходе из компрессора.
В зависимости от степени наддува принимаются следующие зна-
чения давления pк надувочного воздуха:
низкий наддув | 1,5 · p0; |
средний | (1,5…2,2) · p0; |
высокий | (2,2…2,5) · p0. |
Температура воздуха за компрессором
где nк – показатель политропы сжатия воздуха в компрессоре; для на-гнетателей:
дпоршневых nк = 1,4…1,6; добъемных nк = 1,55…1,75; досевых и центробежных nк = 1,4…2,0. |
Давление остаточных газов
Давление остаточных газов зависит от числа и расположения клапанов и их размеров, сопротивления выпускного тракта, быстро-ходности двигателя, системы охлаждения и других факторов; для авто-мобильных и тракторных двигателей находится в пределах:
Средняя скорость поршня Vп (м/с) принимается по прототипу
и определяется по выражению
где S – ход поршня (м).
Большие значения принимаются для высокооборотных двигателей
с высокой средней скоростью поршня.
Температура остаточных газов
Температура остаточных газов Tr зависит от типа двигателя, степени сжатия, частоты вращения, коэффициента избытка воздуха, степени догора-ния топлива в процессе расширения и нагрузки и может иметь значения:
Tr = 700…900 K, Tr = 900…1 100 K |
для дизелей и карбюраторных двигателей соответственно.
С возрастанием степени сжатия температура снижается, а при уве-личении частоты вращения – возрастает. На температуру остаточных газов влияет состав смеси. С увеличением коэффициента избытка воздуха температура остаточных газов снижается.
Температура подогрева свежего заряда
(дизели без наддува);
Как правило, V-образные двигатели по сравнению с рядными имеют меньший подогрев заряда.
Коэффициент избытка воздуха
Применяемое для расчета значение коэффициента избытка воздуха в основном определяется типом двигателя и способом смесеобразования и находится в пределах:
Показатели политроп сжатия и расширения
Средний показатель политропы сжатия n1 зависит от частоты вращения коленчатого вала двигателя, степени сжатия, формы камеры сгорания, размеров цилиндра, материала поршня и головки цилиндров, теплообмена и других факторов.
Для современных двигателей средний показатель политропы сжа-тия n1 находится в пределах:
дизели с нераздельными камерами сгорания | n1 = 1,38…1,4; |
дизели с раздельными камерами сгорания | n1 = 1,35…1,38; |
карбюраторные двигатели | n1 = 1,34…1,39. |
При выборе n1 следует иметь в виду, что с увеличением частоты вращения двигателя показатель политропы сжатия увеличивается. Дизели с камерой в поршне имеют n1, близкий к 1,4.
Средний показатель политропы расширения n2 зависит от степени догорания топлива, интенсивности отвода тепла в процессе расширения, утечек через неплотности и находится в пределах:
дизельные двигатели | n2 = 1,2…1,27; |
карбюраторные двигатели | n2 = 1,24…1,3. |
При этом меньшие значения относятся к высокооборотным дизелям с небольшими степенями повышения давления. Показатель возрастает
с увеличением интенсивности охлаждения деталей двигателя и усиле-нием утечек заряда через неплотности.
Для дизельных двигателей серии ЯМЗ средний показатель поли-тропы n2 = 1,2…1,22.
Какая температура выхлопных газов дизельного двигателя должна быть
Поддержание температуры дизельного двигателя в строго заданных рамках является важным параметром для достижения оптимальных эксплуатационных показателей. От конструктивных особенностей и целевого назначения двигателя будет зависеть, какая рабочая температура дизеля будет нормальной для того или иного мотора.
Рабочий температурный режим одного ДВС может заметно отличаться от другого. Что касается дизельного двигателя, его рабочая температура (при условии полностью исправного агрегата, системы охлаждения и других узлов) зависит от ряда условий.
Показатель степени сжатия
Дизельный мотор работает по принципу самовоспламенения смеси от контакта распыленной солярки с разогретым от сжатия воздухом. Чем сильнее сжимается (разогревается) в цилиндре воздух, тем интенсивнее происходит вспышка после топливного впрыска, при этом количество подаваемого топлива остается одинаковым.
Зависимость эффективности вспышки от степени сжатия (повышения температуры воздуха) влияет на КПД дизельного двигателя. Получается, моторы с высокой степенью сжатия условно можно считать более «горячими».
Стоит также учитывать, что степень сжатия повышают только до определенных пределов. Топливно-воздушная смесь в цилиндре должна не взрываться от контакта с разогретым воздухом, а равномерно сгорать. Сильное увеличение степени сжатия может привести к бесконтрольному воспламенению топлива, что вызывает детонацию, локальные перегревы и ускоренный износ цилиндропоршневой группы.
Допустимые рабочие температуры дизельных ДВС
Температура дизельного двигателя будет напрямую зависеть от типа мотора. От поддержания рабочего температурного показателя дизельного агрегата зависит процесс смесеобразования и сгорания топливно-воздушной рабочей смеси, а также нормальное функционирование других систем ДВС.
После выхода на рабочую температуру время испарения солярки сокращается до оптимального показателя, уменьшается период задержки самовоспламенения. Топливно-воздушная смесь сгорает равномерно и полноценно, что приводит к увеличению КПД дизеля, меньшему расходу топлива и снижению токсичности выхлопных газов.
По утверждениям специалистов, оптимальным показателем рабочей температуры дизельного мотора считается температурный режим на отметке от 70 до 90 градусов Цельсия. Допустимым максимумом в процессе работы дизеля под нагрузкой является повышение температуры дизельного двигателя до 97 градусов, но не выше.
Дизель не прогревается до оптимальной температуры
В процессе прогрева исправного дизельного ДВС в режиме холостого хода желательно дождаться нагрева охлаждающей жидкости до температуры около 40-50°С. При сильном минусе за бортом дизель может и вовсе начать прогреваться только в движении. Начинать езду необходимо на пониженной передаче, придерживаясь отметки около 2-2.5 тыс. об/мин. Когда температура поднимется до 80°С, нагрузку на мотор можно увеличить.
Рекомендуем также прочитать статью о том, почему дизель дымит черным дымом. Из этой статьи вы сможете узнать о причинах дымления дизельного двигателя на различных режимах его работы.
Если дизель не выходит на рабочую температуру в движении, это говорит о том, что произошло снижение его КПД. Падает мощность, автомобиль хуже разгоняется, возрастает расход дизтоплива и т.д. Данные симптомы могут указывать на следующие неполадки:
- неисправности системы охлаждения двигателя (термостат);
- степень сжатия не соответствует норме (низкая компрессия);
Работа дизеля, который не прогрелся до рабочей температуры, под серьезной нагрузкой приводит к неполному сгоранию смеси, активному образованию нагара, засорению топливных форсунок, ускоренному износу узлов силового агрегата, выходу из строя сажевого фильтра и т.д.
В качестве примера можно рассмотреть засорение распылителя дизельной форсунки. Качество распыла топлива снижается, форсунка «льет» солярку. Топливо начинает сгорать неравномерно и несвоевременно, догорает на поршне и вызывает его прогар. Также прогорать может и выпускной клапан. Результатом становится падение компрессии, то есть воздух в неисправных цилиндрах не сможет сжиматься до такой температуры, при которой сгорание смеси будет оптимальным. Дизельный ДВС в подобных условиях не выйдет на рабочую температуру, будет испытывать затруднения с запуском «на холодную» и после прогрева.
Какова рабочая температура дизельных двигателей и какие у них особенности? Эти вопросы, а также многие другие будут рассмотрены ниже.
Особенности дизельного двигателя
Итак, прежде чем затрагивать какие-либо конкретные параметры, следует определиться, что же, вообще, представляет собой дизельный двигатель. История данного типа моторов начинается в далеком 1824 году, когда известный французский физик выдвинул теорию о том, что можно произвести нагрев тела до необходимой температуры путем изменения его объема. Другими словами, осуществив стремительное сжатие.
Однако практическое применение этот принцип нашел спустя несколько десятилетий, и в 1897 году был выпущен первый в мире дизель-мотор, его разработчиком является немецкий инженер Рудольф Дизель. Таким образом, принцип работы подобного двигателя заключается в самовоспламенении распыленного топлива, взаимодействующего с разогретым в процессе сжатия воздухом. Сфера применения такого мотора довольно обширна, начиная со стандартных автомобилей, грузовиков, сельскохозяйственной техники и заканчивая танками и судостроением.
Достоинства и недостатки дизельного мотора
Теперь же следует сказать пару слов обо всех плюсах и минусах подобных конструкций. Начнем с положительных сторон. Моторы данного типа работают практически на любом горючем, поэтому к качеству последнего не предъявляются какие-либо серьезные требования, более того, с увеличением его массы и содержания атомов углерода повышается и теплотворная способность движка, а, следовательно, и его эффективность. Его КПД иногда переваливает за отметку 50%.
Автомобили с такими моторами более «отзывчивые», а все благодаря высокому значению вращающего момента на низких оборотах. Поэтому такой агрегат приветствуется на моделях спортивных машин, где нельзя не газовать от души. Кстати, именно этот фактор поспособствовал широкому распространению данного типа мотора на большие грузовые авто. Да и количество СО в составе выхлопных газов дизельных моторов значительно ниже, чем у бензиновых, что также является несомненным преимуществом. Кроме того, они намного экономичнее, да и раньше топливо стоило значительно ниже бензина, хотя на сегодняшний день их цены практически сравнялись.
Что же насчет недостатков, так они носят следующий характер. В связи с тем, что во время рабочего процесса возникает огромная механическая напряженность, детали дизельного двигателя должны быть более мощными и качественными, а, значит, и более дорогостоящими. Кроме того, это сказывается и на развиваемой мощности, причем не с самой лучшей стороны. Экологическая сторона вопроса сегодня очень важна, поэтому ради снижения выброса выхлопных газов общество готово платить за более «чистые» моторы и развивают это направление в исследовательских лабораториях.
Еще одним значительным минусом является вероятность застывания топлива в холодное время года, так что если вы живете в регионе, где преобладают довольно низкие температуры, то дизельное авто не самый лучший вариант. Выше было сказано, что к качеству горючего не предъявляются серьезные требования, однако это касается только лишь масляных примесей, а вот с механическими ситуация обстоит намного серьезней. Детали агрегата очень чувствительны к подобным добавкам, кроме того, они быстро выходят из строя, а ремонт довольно сложный и дорогостоящий.
Основные параметры агрегатов на дизеле
Прежде чем отвечать на вопрос, какая рабочая температура у дизельного двигателя, стоит немного уделить внимание и его основным параметрам. К ним относится тип агрегата, в зависимости от количества тактов могут быть четырех- и двухтактные моторы. Также немалое значение имеет количество цилиндров с их расположением и порядком работы. На мощность транспортного средства существенно влияет и крутящий момент.
Теперь же рассмотрим непосредственно влияние степени сжатия газово-топливной смеси, которой, собственно говоря, и определяется рабочая температура в цилиндрах дизельного двигателя. Как уже было сказано вначале, мотор работает за счет воспламенения паров топлива при взаимодействии их с раскаленным воздухом. Таким образом происходит объемное расширение, поршень поднимается и, в свою очередь, толкает коленчатый вал.
Чем большим будет сжатие (температура также повышается), тем интенсивнее происходит выше описываемый процесс, а, следовательно, и повышается значение полезной работы. Количество топлива остается неизменным.
Однако имейте в виду, что для наиболее эффективной работы двигателя топливно-воздушная смесь должна равномерно гореть, а не взрываться. Если же сделать степень сжатия очень большой, это приведет к нежелательному результату – неконтролируемому воспламенению. Кроме того, подобная ситуация не только способствует недостаточно эффективной работе агрегата, но и ведет к перегреву и повышенному износу элементов поршневой группы.
Фазы сгорания топлива и природа выхлопных газов
Как же осуществляется процесс сгорания топливно-воздушной смеси в дизельных моторах и какая при этом температура в камере? Итак, весь процесс работы двигателя можно разделить на четыре основные стадии. На первой происходит впрыскивание горючего в камеру сгорания, происходящее под высоким давлением, что и является началом всего процесса. Затем хорошо распыленная смесь самовоспламеняется (вторая фаза) и горит. Правда, далеко не всегда топливо во всем объеме достаточно хорошо перемешивается с воздухом, есть еще и зоны, имеющие неравномерную структуру, они начинают гореть с некоторым запозданием. На данном этапе вероятно возникновение ударной волны, но она не страшна, так как не приводит к детонации. Температура же, царящая в камере сгорания, достигает 1700 К.
Во время третьей фазы образуются капли из неотработанной смеси, они при повышенных температурах превращаются в сажу. Такой процесс, в свою очередь, приводит к высокой степени загрязнения выхлопных газов. В этот период температура еще более возрастает на целых 500 К и достигает значения 2200 К, при этом всем давление, напротив, постепенно понижается.
На последнем же этапе происходит догорание остатков топливной смеси, чтобы она не выходила в составе выхлопных газов, существенно загрязняя атмосферу и дороги. Для этой стадии характерен недостаток кислорода, это происходит из-за того, что его большая часть уже сгорела на предыдущих фазах. Если подсчитать все количество потраченной энергии, то она будет составлять около 95 %, оставшиеся же 5% теряются в связи с неполным сгоранием горючего.
Регулируя степень сжатия, а точнее, доведя ее до максимально допустимого значения, можно немного снизить расход топлива. В этом случае температура отработанных выхлопных газов дизельного двигателя будет находиться в пределах от 600 до 700 °С. А вот в аналогичных карбюраторных моторах ее значение может достигнуть целых 1100 °С. Поэтому получается, что во втором случае теряется намного больше тепла, а выхлопных газов вроде как больше.
Рабочая температура двигателя зимой – как стартовать правильно?
Наверняка не только владельцы транспортных средств, на которых стоит дизельный мотор, знают, что автомобиль следует прогреть несколько минут перед началом движения, особенно это актуально в холодное время года. Итак, рассмотрим особенности данного процесса. Первыми подвергаются нагреву поршни и только потом уже блок цилиндров. Поэтому температурные расширения этих деталей отличаются, а не разогревшееся до нужной температуры масло имеет густую консистенцию и не поступает в необходимом количестве. Таким образом, если начать газовать на недостаточно прогретом авто, то это негативно скажется на резиновой прокладке, расположенной между вышеуказанными деталями и элементами двигателя.
Однако опасность представляет и чрезмерно длительное прогревание движка, потому как в это время все детали работают, так сказать, на износ. А, следовательно, и их эксплуатационный срок сокращается. Как же правильно осуществить данную процедуру? Сначала необходимо на холостых оборотах довести температуру жидкости до отметки 50 °С и после этого начать движение, но только на пониженной передаче, не превышающей 2500 об/мин. После того как масло нагреется до отметки, когда рабочая температура равна 80 °С, можно и прибавить оборотов двигателя.
Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.
Если во время движения дизельный двигатель не способен выйти на рабочую температуру, это однозначно один из симптомов неисправности, так как КПД снижен. Из-за падения мощности снижаются динамические характеристики, при этом увеличивается расход топлива. Подобные проблемы могут указывать на несколько неисправностей:
• система охлаждения неисправна;
• компрессия в цилиндрах низкая.
Если дизельная силовая установка не прогрелась до рабочей температуры, то во время движения под нагрузкой дизтопливо не сгорает полностью, в результате образуется нагар, топливные форсунки засоряются, сажевый фильтр быстро выходит из строя, изнашиваются различные элементы дизельного мотора и это далеко не полный список последствий.
Например, если забьет форсунки подачи топлива, дизтопливо будет не распыляться, а в лучшем случае заливаться в камеры сгорания, соответственно топливо не может полностью сгореть, на поршнях сначала образуется нагар, а позже из-за перегрева поверхность может попросту прогореть. Если прогорит выпускной клапан, в цилиндре упадет компрессия, давления сжатия будет недостаточно для воспламенения топливной смеси. Соответственно и рабочая температура для такого двигателя будет исключена, запуск будет одинаково
Все эти методы помогут сберечь мотор, если он все-таки работает зимой, а вот как быть, если он отказывается реагировать на ваши действия? Тут тяжело что либо советовать уже по факту проблемы, проще ее не допустить. Это стало возможным благодаря новому изобретению производителей топлива – присадкам, которые помогают составу не парафинзироваться. Кроме возможности добавлять их самостоятельно, вы можете приобретать уже готовую солярку с оптимальными пропорциями этих добавок. В большинстве регионов с низкой зимней температурой она появляется на заправках уже в первые небольшие морозы, называется часто как ДТ-Арктика.
Читайте также: