Схема двигателя киа рио 4
Двигатель
Двигатель (вид спереди по направлению движения автомобиля): 1 – компрессор кондиционера; 2 – крышка термостата; 3 – ремень привода вспомогательных агрегатов; 4 – насос охлаждающей жидкости; 5 – генератор; 6 – кронштейн правой опоры силового агрегата; 7 – крышка привода газораспределительного механизма; 8 – головка блока цилиндров; 9 – клапан системы изменения фаз газораспределения; 10 – крышка маслозаливной горловины; 11 – крышка головки блока цилиндров; 12 – впускной трубопровод; 13 – выпускной патрубок системы охлаждения; 14 – блок управления дроссельного узла; 15 – блок цилиндров; 16 – датчик сигнализатора недостаточного давления масла; 17 – датчик положения коленчатого вала; 18 – маховик; 19 – поддон картера; 20 – масляный фильтр; 21 – крышка поддона картера.
Двигатель (вид сзади по направлению движения автомобиля): 1 – кронштейн катколлектора; 2 – теплозащитный экран; 3 – маховик; 4 – блок цилиндров; 5 – катколлектор; 6 – трубка подвода охлаждающей жидкости к насосу; 7 – трубка подвода охлаждающей жидкости к радиатору отопителя; 8 – выпускной патрубок системы охлаждения; 9 – рым; 10 – управляющий датчик концентрации кислорода; 11 – крышка головки блока цилиндров; 12 – крышка маслозаливной горловины; 13 – головка блока цилиндров; 14 – ремень привода вспомогательных агрегатов; 15 – насос гидроусилителя рулевого управления; 16 – механизм натяжения ремня привода вспомогательных агрегатов; 17 – поддон картера.
Силовой агрегат (вид справа по направлению движения автомобиля): 1 – крышка поддона картера; 2 – шкив привода вспомогательных агрегатов; 3 – механизм натяжения ремня привода вспомогательных агрегатов; 4 – катколлектор; 5 – шкив насоса гидроусилителя рулевого управления; 6 – крышка привода газораспределительного механизма; 7 – крышка головки блока цилиндров; 8 – направляющий ролик ремня привода вспомогательных агрегатов; 9 – крышка маслозаливной горловины; 10 – кронштейн правой опоры силового агрегата; 11 – рым; 12 – указатель уровня масла; 13 – впускной трубопровод; 14 – генератор; 15 – крышка термостата; 16 – шкив насоса охлаждающей жидкости; 17 – ремень привода вспомогательных агрегатов; 18 – электромагнитная муфта компрессора кондиционера; 19 – блок цилиндров; 20 – масляный фильтр; 21 – поддон картера.
Двигатель (вид слева по направлению движения автомобиля): 1 – маховик; 2 – блок цилиндров; 3 – компрессор кондиционера; 4 – крышка термостата; 5 – дроссельный узел; 6 – впускной трубопровод; 7 – указатель уровня масла; 8 – топливная рампа; 9 – головка блока цилиндров; 10 – выпускной патрубок системы охлаждения; 11 – крышка головки блока цилиндров; 12 – датчик температуры охлаждающей жидкости; 13 – клапан продувки адсорбера; 14 – шланг подвода охлаждающей жидкости к блоку подогрева дроссельного узла; 15 – трубка подвода охлаждающей жидкости к насосу; 16 – катколлектор; 17 – теплозащитный экран.
Головка блока цилиндров в сборе (крышка головки блока снята): 1 – распределительный вал впускных клапанов; 2 – распределительный вал выпускных клапанов.
Электромагнитный клапан системы изменения фаз установлен в гнезде головки блока цилиндров.
Датчик 1 положения распределительного вала впускных клапанов установлен на передней стенке головки блока цилиндров. Задающий диск 2 датчика расположен на конце распределительного вала.
Исполнительный механизм системы изменения фаз установлен на носке распределительного вала впускных клапанов и совмещен со звездочкой привода вала.
Электромагнитный клапан системы изменения фаз.
Место установки клапана системы вентиляции.
Конструкции двигателей G4FA (1,4 л) и G4FС (1,6 л) практически одинаковы. Отличия связаны с размерами деталей кривошипно-шатунного механизма, т. к. ходы поршня у двигателей разные. Двигатель – бензиновый, четырехтактный, четырехцилиндровый, рядный, шестнадцатиклапанный, с двумя распределительными валами. Расположен в моторном отсеке поперечно. Порядок работы цилиндров: 1–3–4–2, отсчет – от шкива привода вспомогательных агрегатов.
Система питания – фазированный распределенный впрыск топлива (нормы токсичности Евро‑4).
Двигатель с коробкой передач и сцеплением образуют силовой агрегат – единый блок, закрепленный в моторном отсеке на трех эластичных резинометаллических опорах.
Правая опора крепится к кронштейну, прикрепленному справа к головке и блоку цилиндров, а левая и задняя опоры – к кронштейнам на картере коробки передач. Справа на двигателе (по направлению движения автомобиля) расположены: привод газораспределительного механизма (цепью); привод насоса охлаждающей жидкости, генератора, насоса гидроусилителя рулевого управления и компрессора кондиционера (поликлиновым ремнем). Слева расположены: выпускной патрубок системы охлаждения; датчик температуры охлаждающей жидкости; клапан продувки адсорбера. Спереди: впускной трубопровод с дроссельным узлом, топливная рампа с форсунками, масляный фильтр, указатель уровня масла, генератор, стартер, компрессор кондиционера, термостат, датчик положения коленчатого вала, датчик положения распределительного вала, датчик детонации, датчик сигнализатора недостаточного давления масла, клапан системы изменения фаз газораспределения. Сзади: катколлектор, управляющий датчик концентрации кислорода, насос гидроусилителя рулевого управления. Сверху: катушки и свечи зажигания. Блок цилиндров
отлит из алюминиевого сплава по методу Open-Deck со свободно стоящей в верхней части блока единой отливкой цилиндров. В нижней части блока цилиндров расположены опоры коленчатого вала – пять постелей коренных подшипников вала со съемными крышками, которые крепятся к блоку специальными болтами. Отверстия в блоке цилиндров под коренные подшипники (вкладыши) коленчатого вала обрабатываются в сборе с крышками, поэтому крышки невзаимозаменяемы. На торцевых поверхностях средней (третьей) опоры имеются гнезда для двух упорных полуколец, препятствующих осевому перемещению коленчатого вала. Коленчатый вал – из высокопрочного чугуна, с пятью коренными и четырьмя шатунными шейками. Вал снабжен четырьмя противовесами, выполненными на продолжении двух крайних и двух средних щек. Противовесы предназначены для уравновешивания сил и моментов инерции, возникающих при движении кривошипно-шатунного механизма во время работы двигателя. Вкладыши коренных и шатунных подшипников коленчатого вала стальные, тон-
костенные, с антифрикционным покрытием. Коренные и шатунные шейки коленчатого вала соединяют каналы, просверленные в теле вала и служащие для подвода масла от коренных к шатунным подшипникам вала. На переднем конце (носке) коленчатого вала установлены звездочка привода газораспределительного механизма (ГРМ), шестерня масляного насоса и шкив привода вспомогательных агрегатов, который также является демпфером крутильных колебаний вала. К фланцу коленчатого вала шестью болтами прикреплен маховик, который облегчает пуск двигателя, обеспечивает вывод его поршней из мертвых точек и более равномерное вращение коленчатого вала в режиме работы двигателя на холостом ходу.
Маховик отлит из чугуна и имеет напрессованный стальной зубчатый венец для пуска двигателя стартером.
Шатуны – кованые, стальные, двутаврового сечения. Своими нижними разъемными головками шатуны соединены через вкладыши с шатунными шейками коленчатого вала, а верхними головками – через поршневые пальцы с поршнями.
Крышки шатунов крепятся к телу шатуна специальными болтами.
Поршни выполнены из алюминиевого сплава. В верхней части поршня проточены три канавки под поршневые кольца. Два верхних поршневых кольца – компрессионные, а нижнее – маслосъемное.
Компрессионные кольца препятствуют прорыву газов из цилиндра в картер двигателя и способствуют отводу тепла от поршня к цилиндру. Маслосъемное кольцо удаляет излишки масла со стенок цилиндра при движении поршня. Поршневые пальцы – стальные, трубчатого сечения. В отверстиях поршней пальцы установлены с зазором, а в верхних головках шатунов – с натягом (запрессованы).
Головка блока цилиндров, отлитая из алюминиевого сплава, общая для всех четырех цилиндров. Она центрируется на блоке двумя втулками и крепится десятью болтами. Между блоком и головкой блока цилиндров установлена безусадочная металлоармированная прокладка. На противоположных сторонах головки блока цилиндров расположены окна впускных и выпускных каналов. Свечи зажигания установлены по центру каждой камеры сгорания.
В верхней части головки блока цилиндров установлены два распределительных вала. Один вал приводит впускные клапаны газораспределительного механизма, а другой – выпускные. Особенностью конструкции распределительного вала является то, что кулачки напрессованы на трубчатый вал. Клапаны приводятся в действие кулачками распределительного вала через цилиндрические толкатели.
На каждом валу выполнены восемь кулачков – соседняя пара кулачков одновременно управляет двумя клапанами (впускными или выпускными) каждого цилиндра. Опоры (подшипники) распределительных валов (по пять опор для каждого вала) выполнены разъемными. Отверстия в опорах обрабатываются в сборе с крышками. Передняя крышка (со стороны привода ГРМ) подшипников – общая для обоих распределительных валов. Привод распределительных валов – цепью от звездочки коленчатого вала. Гидромеханическое натяжное устройство автоматически обеспечивает требуемое натяжение цепи в процессе эксплуатации. Клапаны в головке блока цилиндров расположены в два ряда, V‑образно, по два впускных и два выпускных клапана на каждый цилиндр. Клапаны стальные, выпускные – с тарелкой из жаропрочной стали и наплавленной фаской.
Диаметр тарелки впускного клапана больше, чем выпускного. В головку блока цилиндров запрессованы седла и направляющие втулки клапанов. Сверху на направляющие втулки клапанов надеты маслосъемные колпачки, изготовленные из маслостойкой резины. Клапан закрывается под действием пружины. Нижним концом она опирается на шайбу, а верхним – на тарелку, удерживаемую двумя сухарями. Сложенные вместе сухари имеют форму усеченного конуса, а на их внутренней поверхности выполнены буртики, входящие в проточки на стержне клапана. Конструктивной особенностью двигателя является наличие системы регулирования фаз газораспределения (CVVT), т. е. изменения момента открытия и закрытия клапанов. Система обеспечивает установку оптимальных фаз газораспределения для каждого момента работы двигателя с целью увеличения его мощностных и динамических характеристик за счет изменения положения распределительного вала впускных клапанов. Управляет системой электронный блок управления двигателем (ЭБУ). К основным элементам системы CVVT относятся
управляющий электромагнитный клапан, исполнительный механизм изменения положения распределительного вала и датчик положения распределительного вала.
Цепь привода ГРМ приводит в действие исполнительный механизм системы, который посредством гидромеханической связи передает вращение распределительному валу. Из масляной магистрали моторное масло под давлением по каналам подводится к гнезду головки блока цилиндров, в котором установлен клапан, и далее через каналы в головке и распределительном валу – к исполнительному механизму системы.
По командам ЭБУ золотниковое устройство электромагнитного клапана управляет подачей масла под давлением в рабочую полость исполнительного механизма или сливом из нее масла. За счет изменения давления масла и гидромеханического воздействия происходит взаимное перемещение отдельных элементов исполнительного механизма, и распределительный вал поворачивается на требуемый угол, изменяя фазы газораспределения. Золотниковое устройство электромагнитного клапана и элементы исполнительного механизма системы очень чувствительны к загрязнению моторного масла. При выходе из строя системы изменения фаз впускные клапаны открываются и закрываются в режиме максимального запаздывания.
Смазка двигателя – комбинированная. Под давлением масло подается к коренным и шатунным подшипникам коленчатого вала, парам «опора – шейка распределительного вала», натяжителю цепи и исполнительному механизму системы изменения фаз газораспределения.
Давление в системе создает масляный насос с шестернями внутреннего зацепления и редукционным клапаном. Корпус масляного насоса изнутри прикреплен к крышке привода ГРМ. Ведущая шестерня насоса приводится от носка коленчатого вала. Насос через маслоприемник забирает масло из поддона картера и через масляный фильтр подает его в главную магистраль блока цилиндров, от которой отходят масляные каналы к коренным подшипникам коленчатого вала. К шатунным подшипникам коленчатого вала масло подается через каналы, выполненные в теле вала. От главной магистрали отходит вертикальный канал для подвода масла к подшипникам распределительных валов и каналам в головке блока цилиндров системы изменения фаз газораспределения.
На режимах полных нагрузок, когда разрежение во впускном трубопроводе снижается, картерные газы из-под крышки головки блока цилиндров попадают в цилиндры двигателя через штуцер крышки 1, соединенный шлангом 2 со шлангом 3 подвода воздуха к дроссельному узлу.
Излишки масла сливаются из головки блока цилиндров в поддон картера через специальные дренажные каналы. Масляный фильтр – полнопоточный, неразборный, снабжен перепускным и противодренажным клапанами. Разбрызгиванием масло подается на поршни, стенки цилиндров и кулачки распределительных валов. Система вентиляции картера двигателя – принудительная, закрытого типа. В зависимости от режима работы двигателя (частичная или полная нагрузка, холостой ход) картерные газы из-под крышки головки блока цилиндров попадают во впускной тракт по шлангам двух контуров. При этом газы очищаются от частиц масла, проходя через маслоотделитель, расположенный в крышке головки блока цилиндров. При работе двигателя на холостом ходу и режимах малых нагрузок, когда разрежение во впускном трубопроводе велико, картерные газы отбираются из двигателя через клапан системы вентиляции, расположенный в крышке головки блока цилиндров, и по шлангу подводятся к впускному трубопроводу, в пространство за дроссельной заслонкой.
Клапан системы вентиляции картера.
В зависимости от разрежения во впускном трубопроводе клапан регулирует поток картерных газов, поступающий в цилиндры двигателя.
Системы управления двигателем, питания, охлаждения и выпуска отработавших газов описаны в соответствующих главах.
Двигатель Киа Рио 1.4
Выбор автомобиля – непростая задача, тем более, когда средства ограничены суммой, допустим, в пределах 700 000 рублей. В лидерах бюджетного сегмента — южнокорейская модель Kia Rio, которую производят в нашей стране на протяжении 6 лет. Выбор комплектаций и вариантов исполнения для этого экземпляра велик, а самым важным параметром является движок «стального коня». Преимущественно из-за стоимости известен двигатель Киа Рио 1.4.
История создания и особенности силового агрегата
Корейский автопром прошёл все стадии становления производства за короткий срок, превратившись из захудалой и посредственной фирмы автоколясок в мирового гиганта и передового разработчика высокотехнологичной продукции. Все это не в последней мере благодаря изготовлению качественных и надёжных силовых агрегатов. На конвейере семейство появилось в середине 2000 годов и прочно вошло в перечень используемых устройств на многих моделях компании.
К признакам и отличительным чертам силового агрегата производитель относит следующее:
- Умеренный аппетит в плане потребления топлива. За счёт небольшого рабочего объёма и конструктивных особенностей модели движок не тратит много топливной смеси. Производитель заявляет смешанный расход в пределах 6.9 литров. Если сравнивать с ближайшими конкурентами — неплохой показатель. На практике при спокойном ритме езды достичь этих цифр не составит большого труда, и потери комфорта от вождения не произойдёт.
- Приемлемые тяговые свойства. По соотношению крутящего момента и количества лошадиных сил агрегат проигрывает мощному собрату, однако наличие множества лицензионных и сторонних прошивок позволяет добиться того, чтобы увеличенная мощность двигателя удовлетворила потребности большинства автолюбителей. Стоимость прошивки в среднем составляет 5 тыс. рублей и добавляет 4–6% мощности. Увеличивать ресурс двигателя Киа Рио возможно и иными способами, однако электронное вмешательство остаётся самым популярным.
При использовании автомобиля в городе (собственно, для чего он и предназначен) крутящего момента и силовых характеристик достаточно для обыденного передвижения в мегаполисе.
- Отчасти невысокой разгонной динамике способствуют высокие требования экологичности, которые попросту «душат» двигатель.
- При всех изъянах в плане недостатка крутящего момента изделие обладает незаурядной «эластичностью». Этот параметр специально подбирался для устойчивого передвижения: отсутствие провалов и потери мощности, вне зависимости от того, какую передачу использует водитель.
Устройство и обслуживание двигателя Киа Рио
Схема, устройство и расположение агрегата, как и у большинства современных представителей, идентичны – поперечно в моторном отсеке. Но движок не снабжён системой фаз газораспределения, что ограничивает мощностные характеристики и обрезает полку крутящего момента в определённых величинах. Однако владельцам не стоит сильно горевать, так как отсутствие сложной системы фаз распределения газов прямым образом и в положительную сторону сказывается на ресурсе двигателя Киа Рио. На практике давно известны случаи, когда изделие выхаживало более 300 000 километров, не требуя капитального ремонта и не имея существенных поломок. Больным местом «старшего» собрата объёмом 1.6 является как раз узел распределения газов, которого этот агрегат лишён.
Ещё одной чертой является наличие цепного привода газораспределительного механизма.
Этот узел намного надёжнее ременного, который выходит в среднем только 60–80 тысяч километров.
Цепь не порвётся, нанеся урон клапанам: лишь со временем, растягиваясь, приводит к увеличению расхода и потере мощности. Однако такой узел при замене потребует значительно больших финансовых затрат. Плановая подтяжка или замена проводятся соответственно на 120 и 180 тысячах пройденных километров.
Также особенностью является лёгкий доступ к свечам зажигания, фильтрам и хорошая обслуживаемость. Заменить основные элементы при плановом техническом осмотре и не составит труда даже для автомобилиста без должного опыта, в отличие от подавляющего большинства иностранных моделей.
Этот мотор является крепким бюджетником в своём классе, неприхотливым в повседневной жизни. В плане динамики двигатель не так хорош, но есть возможность увеличить мощность. В целом при приобретении автомобиля любому рационально мыслящему водителю стоит присмотреться к этому движку.
Электрическая принципиальная схема системы управления распределенным впрыском MFI (G4FA/G4FC: GAMMA 1.4L/1.6L) автомобиля Kia Rio (с 2011 года).
Компоненты блока управления двигателем (датчики, приводы, ЕСМ, форсунка и т.д.) ожидают в режиме готовности при включении замка зажигания.
Двигатель запускается при включении зажигания и обменивается сигналами с компонентами блока управления двигателем (датчиком и приводом) постоянно или с перерывами, управляя впрыском топлива.
Он регулирует время работы форсунки на основе соотношения входящего воздушного потока в цилиндре и состава топливо-воздушной смеси, за счет чего снижается расход топлива, снижается токсичность отработавших газов и улучшается работа двигателя.
Назначение и функции каждого из компонентов описаны ниже.
Разъем [EGG-K].
Датчик абсолютного давления в коллекторе (MAPS).
Данные о количестве впускного потока воздуха должны! передаваться в блок ЕСМ для определения количества впрыскиваемого топлива.
Датчик MAPS передает аналоговый выходной сигнал пропорциональный изменению давления во впускном коллекторе, затем, по этому сигналу и оборотам двигателя блок ЕСМ рассчитывает поток впускного воздуха.
Датчик температуры впускного воздуха (IATS).
Датчик IATS расположен внутри датчика абсолютного давления впускного коллектора (MAPS).
На датчик IATS воздействует поток впускного воздуха.
При изменении значения сопротивления терморезистора в датчике IATS в зависимости от температуры впускного воздуха, напряжение сигнала тоже меняется.
С помощью этого сигнала, показаний температуры впускного воздуха, блок ЕСМ корректирует основное время впрыска топлива и угол опережения зажигания.
Датчик положения педали акселератора (APS).
Датчик определяет положение педали акселератора при нажатии на нее водителем с целью ускорения.
Для обеспечения надежности датчика APS, датчик APS состоит из двух датчиков. Датчика APS 1, выдающего основные сигналы, и датчика APS 2, контролирующего работу датчика APS 1.
Обычно, выходное напряжение датчика APS 2 вдвое меньше выходного напряжения датчика APS 1, и если отношение двух сигналов не в допуске заданного значения, то выдается ошибка.
Датчик температуры охлаждающей жидкости (ECTS).
Резистор в блоке ЕСМ и терморезистор в датчике ECTS соединены последовательно.
При изменении значения сопротивления терморезистора в датчике ECTS в соответствии с изменением температуры охлаждающей жидкости двигателя, напряжение на выходе тоже меняется.
При холодном двигателе блок ЕСМ увеличивает продолжительность впрыска топлива и управляет углом опережения зажигания на основе показаний температуры охлаждающей жидкости двигателя, не допуская остановки двигателя и улучшая характеристики управляемости.
Электродвигатель ЕТС и датчик положения дроссельной заслонки.
С помощью электродвигателя ЕТС блок ЕСМ управляет открытием/закрытием дроссельной заслонки в соответствии с сигналами датчика положения педали акселератора (APS), установленного на модуле электронной педали акселератора. Это позволяет реализовать функцию контроля скорости автомобиля без дополнительного оборудования.
Датчик положения распределительного вала (CMPS).
Датчик определяет верхнюю мертвую точку цилиндра 1. Он установлен на конце распределительного вала и состоит из чувствительного элемента с отверстием и диска синхронизации.
Когда измерительная головка сигналов блокируется выступом диска синхронизации, возникает высокое напряжение, низкое напряжение возникает в противоположной ситуации.
Блок ЕСМ определяет положение каждого цилиндра при помощи сигнала, поступающего от датчика положения распределительного вала.
Датчик положения коленчатого вала (CKPS).
Датчик положения коленчатого вала (CKPS) представляет собой датчик Холла, который вырабатывает напряжение с помощью чувствительного элемента и диска синхронизации, установленных на коленчатом валу.
Блок ЕСМ рассчитывает обороты двигателя по сигналу датчика и управляет продолжительностью впрыска топлива и углом опережения зажигания.
Этот сигнал датчика CMPS передается в блок ЕСМ, который в свою очередь использует сигналы датчика CMPS для определения угла опережения зажигания. Датчик CMPS позволяет осуществлять последовательный впрыск топлива.
Форсунка.
Форсунка представляет собой электромагнитный клапан системы впрыска топлива с электронным управлением, который впрыскивает в двигатель точное рассчитанное количество топлива, оптимизируя сгорание в зависимости от различных режимов работы двигателя.
Блок ЕСМ регулирует время срабатывания форсунки путем отражения впускного воздуха в цилиндре и состава топливо-воздушной смеси, управляя количеством впрыскиваемого топлива с целью насыщения состава топливо-воздушной смеси, требуемой системой управления двигателем для уменьшения расхода топлива, улучшения работы двигателя и сокращения выбросов отработавших газов.
Катушка зажигания.
Угол опережения зажигания управляется блоком зажигания с электронным управлением.
Стандартные значения угла опережения зажигания в зависимости от состояния двигателя хранятся в памяти блока ЕСМ.
Режим работы двигателя (скорость, нагрузка, прогрев и т.д.) определяется различными датчиками.
В блок поступает сигнал выключения тока первичной цепи от блока ЕСМ, исходя из сигналов датчика и данных угла опережения зажигания, активируя катушку зажигания и управляя углом опережения зажигания.
Клапан регулирования подачи масла (OCV).
Клапан OCV представляет собой устройство, которое ускоряет или замедляет открытие или закрытие впускного или выпускного клапана по контрольному сигналу блока ЕСМ в зависимости от нагрузки двигателя.
Датчик кислорода.
Датчик определяет содержание кислорода в отработавших газах и направляет данные в блок ECM.
Его функцией является нагрев наконечника датчика до определенного значения или выше для нормальной работы датчика даже при низкой температуре отработавших газов.
В датчик кислорода встроен нагревательный элемент с возможностью управления.
Датчик детонации.
Этот датчик выдает сигнал детонации (напряжение).
При получении сигнала, блок ЕСМ управляет углом опережения зажигания для оптимизации выходного крутящего момента и расхода топлива, постоянно контролируя уменьшение угла опережения зажигания и увеличивая его при отсутствии детонации.
Электромагнитный клапан продувки адсорбера (PCSV).
Клапан PCSV управляет вакуумным трубопроводом, подсоединенным к бачку адсорбера.
Газ с парами топлива, скапливающийся в бачке, подается в камеру сгорания электромагнитным клапаном продувки адсорбера в соответствии с управлением блока ЕСМ.
Датчик давления хладагента (APT).
Датчик давления преобразует давление хладагента в контуре высокого давления в напряжение электрического сигнала.
С помощью этого сигнала ЕСМ управляет работой вентилятора системы охлаждения с высокой или низкой скоростью.
ЕСМ периодически останавливает компрессор кондиционера для оптимизации работы системы кондиционирования, если температура хладагента в контуре слишком высокая или слишком низкая.
Реле стоп-сигналов.
Оно используется для повышения долговременной надежности выключателя стоп-сигнала.
Выключатель стоп-сигналов.
Блок ЕСМ использует сигнал торможения для определения функциональных неисправностей в системе ЕТС.
Для диагностики выключателя педали тормоза используются два сигнала (аварийный выключатель тормоза и контрольный выключатель тормоза).
Эти два сигнала передают противоположные значения в зависимости от работы тормозов.
Если педаль тормоза не нажата, контрольный выключатель педали тормоза передает значение питающего напряжения, а аварийный выключатель педали тормоза передает значение О В.
Напротив, если педаль тормоза нажата, выводятся противоположные значения.
Сигнал скорости автомобиля.
Передаются данные о скорости автомобиля в блок ЕСМ.
Блок ЕСМ использует эти данные для управления впрыском топлива, углом опережения зажигания, схемой переключения КПП и схемой включения блокировочной муфты гидротрансформатора.
Датчик скорости колеса также используется для определения плохих дорожных условий.
Датчик педали сцепления.
Датчик педали сцепления подсоединен к педали сцепления и передает данные о положении педали сцепления в блок ЕСМ.
Работа педали сцепления определяется сигналом выключателя педали сцепления.
Кроме того, сигнал датчика педали сцепления используется для согласования включенной передачи со скоростью автомобиля и оборотами двигателя.
Индикатор иммобилайзера.
Иммобилайзер передает данные о статусе системы и результатах идентификации миганием сигнальной лампы иммобилайзера, расположенной в комбинации приборов.
С системой электронного ключа.
Если электронный ключ находится в автомобиле, при нажатии кнопки запуска/ остановки двигателя в положение АСС или ON индикатор загорится примерно на 30 секунд, указывая на возможность запуска двигателя. Если же электронного ключа в автомобиле нет, при нажатии кнопки запуска/остановки двигателя индикатор будет мигать в течение нескольких секунд, напоминая о том, что запуск двигателя невозможен. Если источник питания электронного ключа разряжен, при нажатии кнопки запуска/остановки двигателя индикатор будет мигать и запустить двигатель не удастся. Тем не менее, остается возможным запуск двигателя путем нажатия кнопки запуска/остановки непосредственно электронным ключом. Индикатор также будет мигать, если в системе электронного ключа имеется неисправность какого-либо компонента.
Без системы электронного ключа.
Этот индикатор загорается, когда ключ с передатчиком иммобилайзера вставляется в замок зажигания и переводится в положение ON для запуска двигателя. В этот момент можно запустить двигатель. Индикатор гаснет через примерно 30 секунд. При возникновении неисправности в системе иммобилайзера или идентификации, сигнальная лампа мигает после включения зажигания.
Самодиагностика.
Блок ЕСМ обменивается сигналами с компонентами системы управления двигателем (датчиками и приводами) постоянно или прерывисто. Если аномальный сигнал генерируется в течение определенного периода времени, ЕСМ определяет это как неисправность и сохраняет соответствующий код ошибки. Затем он посылает сигнал неисправности на выходной контакт диагностического разъема. Код неисправности копируется аккумуляторной батареей во избежание его стирания при выключении замка зажигания.
Тем не менее, он стирается при отсоединении клеммы аккумуляторной батареи или разъема блока ЕСМ.
Двигатель автомобиля KIA Rio
Автомобиль KIA Rio для российского рынка оснащают поперечно расположенными четырехтактными четырехцилиндровыми бензиновыми инжекторными 16-клапанными двигателями DOHCCVVT рабочим объемом 1,4 и 1,6 л. Внешний вид двигателей в составе силового агрегата показан на рис. 1 и 2.
Оба двигателя практически полностью одинаковы по конструкции и отличаются лишь радиусом кривошипа коленчатого вала (разная величина хода поршня: у двигателя объемом 1,4 л- 74,99 мм, а у двигателя обьемом 1,6 л - 85,44 мм) и высотой блока цилиндров. В связи с этим все работы по ремонту и обслvживанию двигателя описаны на примере двигателя рабочим объемом 1,6 л. Работы по двигателю рабочим объемом 1,4 л полностью аналогичны.
ПРИМЕЧАНИЕ:
Рабочий объем двигателя (литраж) – один из важнейших конструктивных параметров (характеристик) двигателя внутреннего сгорания (ДВС), выражаемый в литрах (л) или кубических сантиметрах (см 3 ).
Рабочий объем двигателя в значительной степени определяет его мощность и другие рабочие параметры. Он равен сумме рабочих объемов всех цилиндров двигателя.
В свою очередь, рабочий объем цилиндра определяется как произведение площади сечения цилиндра на длину рабочего хода поршня (от НМТ до ВМТ). По данному параметру различают длинноходные двигатели с длиной хода поршня, превышающий диаметр цилиндра, и короткоходные с ходом поршня меньше диаметра цилиндра. Таким образом при диаметре цилиндра 77,0 мм, общем для обоих двигателей, двигатель объемом 1,4 л короткоходный, а 1,6 л – длинноходный.
Двигатели автомобиля KIA Rio - с рядным вертикальным расположением цилиндров жидкостного охлаждения. Pacпределительные валы двигателей приводятся во вращение цепью.
Отличительной особенностью двигателя автомобиля KIA Rio является наличие у него электронной системы изменения фаз газораспределения (CVVT), динамически регулирующей положение впускного распределительного вала. Эта система позволяет установить оптимальные фазы газораспределения для каждого моменте работы двигателя, в результате чего достигается повышенная мощность, лучшая топливная экономичность и меньшая токсичность отработавших газов.
Механизм изменения фаз газораспределения, установленный на впускном распределительном валу, по сигналу электронного блока управления двигателем поворачивает вал на необходимый угол в соответсвии с режимом работы двигателя.
Рис.3. Механизм изменения фаз газораспределения: 1- корпус механизма изменения фаз; 2- ротор; 3- масляный канал.
Механизм изменения фаз газораспределения представляет собой гидравлический механизм, соединенный с системой смазки двигателя. Масло из системы смазки двигателя поступает через каналы в газораспределительный механизм. Ротор 2 (рис.3) поворачивает распределительный вал по команде блока управления двигателем.
Для определения мгновенного положения распределительного вала установлен датчик положения распределительного вала у задней части распределительного вала. На шейке распределительного вала расположено задающее кольцо датчика положения.
На головке блока цилиндров закреплен электромагнитный клапан, гидравлически управляющий механизмом. Электромагнитным клапаном, в свою очередь, управляет электронный блок управления двигателем.
Рис.4. Процесс изменения фазы газораспределения: А- установка впускного распределительного вала в положение раннего открытия клапанов газораспределения; Б- установка впускного распределительного вала в положение позднего открытия клапанов газораспределения; 1- распределительный вал; 2- механизм изменения фаз газораспределения; 3- электромагнитный клапан системы регулирования фаз газораспределения.
Применение механизма CVVT обеспечивает плавное изменение угла установки впускного распределительного вала в положения раннего и позднего открытия клапанов 3 газораспределения (рис.4). Блок управления определяет положение впускного распределительного вала по сигналам датчика положения распределительного вала и датчика положения коленчатого вала и выдает команду на изменение положения вала.
Возможные неисправности двигателя автомобиля KIA Rio, их причины и способы устранения
Причина неисправности
Способ устранения
Двигатель не пускается
Нет давления в рампе:
-неисправен топливный насос
-засорен топливный фильтр
-неисправен регулятор давления топлива
-промойте и продуйте топливные баки и топливопроводы
-проверьте регулятор, неисправный замените
Двигатель работает неустойчиво или глохнет на холостом ходу
Недостаточное давление в топливной рампе
См. неисправность «Двигатель не пускается»
Подсос воздуха через шланги вентиляции картера двигателя и шланг, соединяющий впускной коллектор с вакуумным усилителем тормозов
Подтяните хомуты крепления, поврежденные шланги замените
Неисправна система зажигания
См. «Система управления двигателем»
Двигатель не развивает полной мощности и не обладает достаточной приемистостью
Неисправен датчик положения дроссельной заслонки
Замените дроссельный узел в сборе
Недостаточное давление в топливной рампе
См. неисправность «Двигатель не пускается»
Загрязнен воздушный фильтр
Замените фильтрующий элемент
Неисправна система зажигания
См. «Система управления двигателем»
Недостаточная компрессия – ниже 1,0 Мпа (10 кгс/см2):
- пробита прокладка головки блока цилиндров
- прогорание поршней, поломка или залегание поршневых колец
- плохое прилегание клапанов к седлам
- чрезмерный износ цилиндров и поршневых колец
- очистите кольца и канавки поршней от нагара, замените поврежденные кольца и поршень
- замените поврежденные клапаны, отшлифуйте седла
- замените поршни, расточите и отхонингуйте цилиндры
Недостаточное давление масла в прогретом двигателе
Использование масла несоответствующей марки
Замените масло рекомендованным
Разжижение или вспенивание масла из-за проникновения в масляный картер топлива или охлаждающей жидкости
Устраните причины проникновения топлива или охлаждающей жидкости.
Загрязнение рабочей полости или износ деталей масляного насоса
Промойте, отремонтируйте или замените масляный насос
Засорение масляного фильтра
Замените масляный фильтр
Ослабление крепления или засорения маслоприемника
Закрепите маслоприемник, промойте его фильтр
Увеличенный зазор между вкладышами коренных и шатунных подшипников и шейками коленчатого вала
Прошлифуйте шейки и замените вкладыши
Трещины, поры в стенках масляных каналов блока цилиндров или засорение масляных магистралей
Отремонтируйте блок цилиндров. При невозможности устранения дефекта замените блок
Стук коренных подшипников коленчатого вала
Обычно стук глухого тона, металлический. Обнаруживается при резком открытии дроссельной заслонки на холостом ходу. Частота его увеличивается с повышением частоты вращения коленчатого вала. Чрезмерный осевой зазор коленчатого вала вызывает стук более резкий, с неравномерными промежутками, особенно заметными при плавном увеличении и уменьшении частоты вращения коленчатого вала
Недостаточное давление масла
См. неисправность «Недостаточное давление масла в прогретом двигателе»
Ослаблены болты крепления маховика
Затяните болты рекомендуемым моментом
Увеличенный зазор между шейками и вкладышами коренных подшипников
Прошлифуйте шейки и замените вкладыши
Увеличенный зазор между упорными фланцами вкладышей среднего коренного подшипника и коленчатым валом
Замените полукольца новыми, проверьте зазор
Стук шатунных подшипников
Обычно стук шатунных подшипников резче стука коренных. Он прослушивается на холостом ходу двигателя при резком открытии дроссельной заслонки. Место стука легко определить, отключая по очереди свечи зажигания
Недостаточное давление масла
См. неисправность «Недостаточное давление масла в прогретом двигателе»
Чрезмерный зазор между шатунными шейками коленчатого вала и вкладышами
Замените вкладыши и прошлифуйте шейки
Стук поршней
Стук обычно не звонкий, приглушенный, вызван «биением» поршня в цилиндре. Лучше всего он прослушивается при малой частоте коленчатого вала и под нагрузкой
Увеличенный зазор между поршнями и цилиндрами
Замените поршни, расточите и отхонингуйте цилиндры
Чрезмерный зазор между поршневыми кольцами и канавками на поршне
Замените кольца или поршни с кольцами
Повышенный шум механизма газораспределения
Пониженное давление масла в системе смазки
См. неисправность «Недостаточное давление масла в прогретом двигателе»
Износ кулачков распределительного вала
Замените распределительный вал
Стук на холодном двигателе, слышный в течение 2-3 мин после пуска и усиливающийся при увеличении частоты вращения коленчатого вала
Увеличенный зазор между поршнями и цилиндрами
Стук поршней, исчезающий после прогрева двигателя, не является признаком неисправности. При постоянном стуке замените поршни, расточите и отхонингуйте цилиндры
Ослабление крепления шкива коленчатого вала
Кратковременные стуки сразу после пуска двигателя
Использование масла несоответствующей марки (пониженной вязкости)
Замените масло рекомендованным заводом-производителем автомобиля
Увеличенный осевой зазор коленчатого вала
Замените упорные полукольца
Увеличенный зазор в переднем коренном подшипнике
Замените вкладыши переднего коренного подшипника
Стуки в прогретом двигателе на режиме холостого хода
Ослабление натяжения или износ ремня привода вспомогательных агрегатов
Отрегулируйте натяжение ремня или замените его
Шум деталей газораспределительного механизма
См. неисправность «Повышенный шум газораспределительного механизма»
Использование масла несоответствующей марки
Замените масло на рекомендованное
Увеличенные зазоры между поршневыми пальцами и отверстиями в бобышках поршней
Замените поршни и пальцы
Увеличенные зазоры между шатунными шейками коленчатого вала и вкладышами
Замените вкладыши и прошлифуйте шейки
Непараллельны оси верхней и нижней головок шатуна
Сильные стуки в прогретом двигателе при повышении частоты вращения коленчатого вала
Чрезмерно натянут ремень привода вспомогательных агрегатов или появление на нем трещин и разрывов
Отрегулируйте натяжение ремня, замените поврежденный ремень
Ослаблено крепления маховика
Затяните болты крепления маховика требуемым моментом
Чрезмерное увеличение зазоров между вкладышами шатунных и коренных подшипников коленчатого вала
Перешлифуйте шейки под ремонтный размер и замените вкладыши
Повышенная вибрация двигателя
Дисбаланс коленчатого вала
Снимите и отбалансируйте коленчатый ввал
Неодинаковые значения компрессии в цилиндрах
См. «Проверка компрессии в цилиндрах»
Опоры подвески силового агрегата сильно изношены или затвердели
Замените опоры подвески силового агрегата (см. «Замена опор подвески силового агрегата»)
Детонационные стуки двигателя при работе под нагрузкой
Использование бензина с пониженным октановым числом
Залейте бензин с соответствующим октановым числом
Повышенный расход масла
Подтекание масла через уплотнения двигателя
Подтяните крепления или замените прокладки и сальники
Засорена система вентиляции картера
Промойте детали системы вентиляции картера
Износ поршневых колец или цилиндров двигателя
Расточите цилиндры, замените поршни и кольца
Поломка поршневых колец
Закоксовывание маслосъемных колец или пазов в канавках поршней из-за применения нерекомендованного масла
Очистите кольца и пазы от нагара, замените моторное масло рекомендуемым
Износ или повреждение маслосъемных колпачков клапанов
Замените маслосъемные колпачки
Повышенный износ стержней клапанов или направляющих втулок
Замените клапаны, отремонтируйте головку блока цилиндров
Перегрев двигателя
Недостаточное количество жидкости в системе охлаждения
Долейте охлаждающую жидкость в систему охлаждения
Сильно загрязнена наружная поверхность радиатора
Очистите наружную поверхность радиатора струей воды
Неисправенэлектровентилятор системы охлаждения
Проверьте электродвигатель вентилятора,датчик его включения и реле, неисправные узлы замените
Неисправен клапан пробки радиатора (постоянно открыт, из-за чего система находится под атмосферным давлением)
Замените пробку наливной горловины радиатора
Использование бензина с пониженным октановым числом
Залейте бензин с соответствующим октановым числом
Быстрое падение уровня жидкости в расширительном бачке
Отремонтируйте радиатор или замените
Повреждение шлангов или прокладок в соединениях трубопроводов, ослабление хомутов
Замените поврежденные шланги или прокладки, подтяните хомуты шлангов
Подтекание жидкости через сальник водяного насоса
Замените водяной насос
Повреждена прокладка головки блока цилиндров
Подтекание жидкости через микротрещины в блоке или головке блока цилиндров
Проверьте герметичность блока и головки блока цилиндров, при обнаружении трещин замените поврежденные детали
KIA Rio с 2017 года, с двигателями 1,4 G4LC и 1,6 G4FG, руководство по эксплуатации, обслуживанию и ремонту.
KIA Rio с 2017 года, с двигателями 1,4 G4LC и 1,6 G4FG, руководство по эксплуатации, обслуживанию и ремонту.
Собранная в данном Руководстве информация позволит владельцу автомобиля KIA Rio определиться с тем, когда и какие виды работ по обслуживанию и ремонту транспортного средства должны производиться. Описание тех или иных ремонтных операций позволит трезво оценить свои возможности и, вероятно, некоторые из неисправностей устранить самостоятельно.
В случае если выполнение ремонта своими силами окажется затруднительным, читатель данного Руководства все же будет иметь представление об объеме необходимых работ, что защитит его от возможного обмана и лишних затрат.
Автомобиль KIA Rio.
Впервые название Rio в модельном ряду корейского автомобильного бренда KIA появилось в 2000 году. Этот автомобиль пришел на смену снятому с производства седану класса В KIA Avella. Современный дизайн, вместительный багажник и достаточно высокий уровень комфорта в салоне в сочетании с умеренной ценой позволили Киа Рио завоевать популярность среди покупателей.
Модель KIA Rio сменила несколько поколений, в промежутках между которыми имели место обновления. Благодаря чему машина никогда не теряла актуальности и не приедалась публике. После того, как третье поколение стало выпускаться на российском заводе в Санкт-Петербурге, популярность этой модели на постсоветском пространстве достигла небывалых масштабов. Сделав этот автомобиль поистине народным. Поэтому появления следующего поколения все ждали с большим нетерпением.
Уже традиционно европейская и азиатская версии KIA Rio значительно отличаются друг от друга как внешне, так и технически. Премьера KIA Rio четвертого поколения в пятидверном кузове хэтчбек состоялась на международном автосалоне во Франции в сентябре 2016 года. А уже после этого в ноябре на автошоу в китайском Гуанчжоу был представлен седан К9.
Экстерьер и интерьер KIA Rio.
Над дизайном экстерьера работали специалисты из Германии и США (Калифорния). Облик нового KIA Rio формируется прямыми линиями и плавными поверхностями. Создающими новый, но при этом достаточно узнаваемый вид. Увеличение длины и колесной базы соответственно на 23 мм и 30 мм благоприятно отразилось на внутреннем пространстве салона. Обеспечив больше места для ног пассажиров, сидящих на задних сиденьях.
Интерьер по качеству материалов отделки и уровню эргономики и комфорта способен конкурировать с моделями более высоких классов. Стильная и компактная приборная панель притягивает взгляд цветным сенсорным дисплеем, который является частью новой мультимедийной системы. Из интересных особенностей нового KIA Rio стоит отметить отдельные воздуховоды для пассажиров, сидящих на задних сиденьях, расположенные между спинками передних сидений.
Объем багажного отсека составляет около 500 литров. В его подполе размещаются полноразмерное запасное колесо и комплект инструмента. При необходимости можно сложить спинки задних сидений, чтобы разместить в автомобиле длинномерный груз.
Линейка двигателей KIA Rio.
Несмотря на уже привычные значения рабочих объемов, линейка двигателей полностью обновились. В зависимости от выбора покупателя могут быть установлены атмосферный 1,4-литровый двигатель G4LC мощностью 99,7 л. с. или 1,6-литровый G4FG мощностью 123 л. с. с двумя фазовращателями и впускным коллектором с изменяемой геометрией впуска.
Силовой агрегат может комплектоваться шестиступенчатыми механической или автоматической коробками передач. Еще одним существенным изменением является появление электрического усилителя вместо прежнего гидравлического.
Комплектации KIA Rio.
Уже в базовой комплектации покупатель получает:
Предупреждение!
Электронная версия данной книги создана исключительно для ознакомления только на локальном компьютере. Скачав файл, вы берете на себя полную ответственность за его дальнейшее использование и распространение. Начиная загрузку книги, вы подтверждаете свое согласие с данными утверждениями.
Реализация данной электронной книги с целью получения прибыли незаконна и запрещена. По вопросам приобретения данной книги обращайтесь непосредственно к законным издателям или их представителям.
Читайте также: