Клапан для регулировки давления газа
Регулятор давления газа принцип работы
Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.
Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.
Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction - сокращение, уменьшение, снижение).
Устройство регулятора давления
Принципиальная схема регулятора давления показана на рисунке.
В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.
Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.
Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.
Регуляторы давления РДНК: особенности конструкции, принцип работы и применение
Регуляторы давления газа РДНК широко применяются в системах газоснабжения.
Конструкция и принцип действия РДНК
РДНК представляет собой комбинированный регулятор давления газа. Он состоит из собственно регулятора давления, предохранительного сбросного клапана и автоматического отключающего устройства, работающих независимо друг от друга.
В состав регулятора давления входят корпус с мембранной камерой и крестовина с седлом.
На мембране расположен предохранительный сбросной клапан. Мембрана закреплена в корпусе с помощью крышки, в которой имеется ниппель, предназначенный для сброса газа в атмосферу в случае повышения выходного давления. Для настройки параметров выходного давления предназначены регулировочный винт и пружина, помещенный в стакан, находящийся в крышке мембранной камеры.
В автоматическом отключающем устройстве имеется мембрана с толкателем. Отсечной клапан фиксируется в открытом положении с помощью штока, прижатого пружиной к толкателю. Для настройки отключающего устройства по повышению и понижению выходного давления предназначены пружины, пробка и втулка.
Принцип работы регулятора давления газа РДНК можно описать следующим образом.
Газ со средним или высоким давлением поступает в регулятор через входной патрубок и проходит через щель между седлом и рабочим клапаном. Здесь его давление понижается до нужного уровня.
Импульс контролируемого давления поступает под мембрану регулятора и в надмембранное пространство отключающего устройства. В случае повышения выходного давления происходит автоматическое открытие сбросного клапана, и излишки газа сбрасываются в атмосферу.
Последующее повышение давления на выходе вызывает перемещение мембраны отключающего устройства, и отсечной клапан перекрывает поступление газа. То же самое происходит при снижении выходного давления.
Типы регуляторов
Основная классификация предполагает разделение регулирующих узлов по принципу действия.
Различаются обратные и прямые устройства. Редуктор с обратным действием работает на понижение давления по мере выхода газа.
Конструкция таких устройств включает клапаны, камеры для буферного содержания смеси, регулировочный винт и фурнитурные приспособления.
Прямое действие означает, что регулятор будет работать на повышение давления при выпуске газа.
Также различают модели редукторов по типу обслуживаемого газа, количеству ступеней редуцирования и месту использования. Например, существуют регуляторы давления газа для баллонов, трубопроводных сетей и рамп (горелок).
В случае с баллонами тип газа определит и способ подключения устройства.
Практически все модели редукторов, кроме ацетиленовых, соединяются с баллонами посредством накидных гаек. Устройства, работающие с ацетиленом, обычно фиксируются к емкости хомутами с упорным винтом.
Предусматриваются и внешние отличия между редукторами – это может быть маркировка по цвету и указанием информации о рабочей смеси.
Устройство и принцип работы регулятора давления
Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.
Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.
Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction - сокращение, уменьшение, снижение).
Устройство регулятора давления
Принципиальная схема регулятора давления показана на рисунке.
В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.
Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.
Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.
Регулятор давления с фильтром
Это устройство совмещает в себе редукционный клапан и фильтр, который очищает сжатый воздух от примесей, частиц грязи, пыли. Подробнее об устройстве и принципе действия такого регулятора (РДФ) можно узнать здесь https://izpk.ru/reduktor-rdf-3-1-rdf-3-2.
Как работает регулятор давления?
В исходом состоянии газ поступает на вход клапана, протекает в зазоре между седлом и клапаном и поступает на выход. Величина зазора определяется степенью поджатия пружины, которое изменяется с помощью регулировочного винта. Получается, что давление на выходе зависит от давления на входе и величины зазора между клапаном 7 и седлом 5.
В случае, если давление на выходе вырастет, то под его воздействием мембрана переместится и сожмет пружину, которая, в свою очередь, переместит клапан 7, проходное сечение уменьшится. Потери давления на нем возрастут, что вызовет падение давление в отводимой линии до величины настройки.
Если давление на выходе регулятора упадет ниже установленной величины, давление с которым газ воздействует на мембрану уменьшится, в результате снизится поджатие пружины 1. Клапан 7 переместится и увеличит проходное сечение. Потери на нем снизятся, что вызовет рост давления в отводимой линии до величины настройки.
Как регулятор поддерживает давление на постоянном уровне
Получается, что величина давления в отводимой линии поддерживается на постоянном уровне, за счет изменения величины потерь на регуляторе. Регулятор настраивается с помощью регулировочного винта, который изменяет поджатие пружины 1, управляющее воздействие на клапан через мембрану оказывает давление газа из отводимой линии.
Давление на выходе регулятора определяется как разность между давлением на входе и величиной потерь давления на клапане.
Трехлинейный регулятор давления
Регулятор имеющий помимо входного и выходного каналов еще и дополнительный - для сброса воздуха при критическом повышении давления называют трехлинейным.
Конструкция этого регулятора отличается от конструкции двухлинейного наличием отверстия в мембране, которое открывается в случае если давление превысит критическую величину. В обычных условиях регулятор работает также как и двухлиненый.
Если давление на выходе возрастает до значения, достаточного чтобы переместить мембрану в крайнее верхнее положение и открыть канал сброса. Газ через этот канал отправляется в атмосферу. Давление в отводимой линии снижается до тех, пока усилия пружины не будет достаточно чтобы закрыть канал сброса.
Так как сброс избыточного давления осуществляется в атмосферу, трехлинейные регуляторы представленной конструкции используют для регулирования давления воздуха.
Таким образом, принцип действия регулятора давления газа, схож в принципом действия гидравлического редукционного клапана, показанном на видео.
Регулирование давления газа с помощью регуляторов давления
Давление газа регулируют с помощью регуляторов давления, которые поддерживают (стабилизируют) рабочее давление на заданном уровне при переменном расходе газа.
Регуляторы давления газа являются важнейшими приборами городских газораспределительных сетей. От их работы зависит бесперебойная подача газа к объектам газопотребления.
В зависимости от назначения и места установки используются различные регуляторы давления, отличающиеся конструктивным исполнением, формой, размерами, пропускной способностью и принципом действия. По принципу действия различают регуляторы прямого и непрямого действия.
У регуляторов прямого действия изменение конечного (рабочего) давления вызывает усилие, необходимое для осуществления регулирующего действия прибора.
У регуляторов непрямого действия изменение конечного (рабочего) давления приводит в действие лишь один из механизмов (командный прибор, регулятор управления), кото¬рый включает источник энергии и осуществляет регулирующие функции.
В зависимости от типа дроссельных устройств регуляторы могут быть одно- и двухседельными, а также с твердыми и мягкими клапанами.
На рис.75 показаны различные виды клапанов дроссельных устройств регуляторов давления: а) жесткий односедельный; б)- мягкий односедельный, выполненный из кожи или газоустойчивой резины; в) полый цилиндр с окнами для прохода газа; г) жесткий двухседельный, неразрезной, с направляющими перьями; д) мягкий двухседельный со свободно насаженными на шток клапанами.
Жесткие клапаны по сравнению с мягкими, хотя и более долговечны в работе, но с течением времени или при засоре не обеспечивают плотного закрытия седла. Клапаны жесткие двухседельные, имеющие двойное сопряжение, не обеспечивают герметичности, поэтому не используются на тупиковых газопроводах.
РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ
У регуляторов давления прямого действия регулирующее устройство приводят в движение мембраной, находящейся под воздействием регулируемого давления.
Изменение регулируемого (рабочего) давления вызывает смещение мембраны, а через передаточный механизм и изменение количества прохода газа через регулирующее устройство регуляторов давления.
Таким образом, на изменение рабочего давления регулятор давления реагирует изменением количества пропускаемого газа.
Принцип действия регулятора давления прямого действия показан на рисунке.
Газ с давлением поступает во входной патрубок регулятора, затем проходит через седло клапана 2 и уходит из регулятора через выходной патрубок 3. Регулятор должен поддерживать после себя рабочее давление постоянные в условиях переменного расхода.
При изменении расхода газа будет изменяться рабочее давление которое воздействует снизу на мембрану 4. При увеличении расхода газа давление в первый момент несколько упадет и сила, действующая на мембрану снизу, несколько уменьшится, в результате чего под действием груза 5 мембрана вместе с клапаном 6 сместится на некоторую величину вниз и увеличит проход для газа. Давление поднимется до прежней величины.
При уменьшении расхода газа давление в первый момент несколько увеличится и мембрана будет смещаться вверх, прикрывая проходное сечение для газа клапаном. Уменьшение подачи газа через регулятор вызовет снижение до первоначальной величины.
Таким образом, регулятор давления будет поддерживать рабочее давление на заданном уровне, который определяется величиной нагрузки мембраны.
Учитывая, что разнообразие конструкций регуляторов давления очень велико, будут рассмотрены только те конструкции, которые широко используются при городском газоснабжении.
Регулятор давления РДК. Нормальная работа бытовых газовых приборов в большой степени зависит от постоянства давления газа во внутри домовых газовых сетях.
При газоснабжении бытовых потребителей сжиженным газом применяют регулятор давления типа РДК, используемый при баллонных установках и рассчитанный на начальное давление до 16 кгс/см 2 .
Давление на выходе можно регулировать в пределах 100—300 мм вод. ст. Производительность регулятора при перепаде давления в 1 кгс/см 2 и удельном весе пропанбутановой смеси около 2 кг/м 3 равна 1 м з /ч. На рис. показано устройство регулятора.
Газ высокого давления поступает через входной штуцер под клапан 2 с уплотнением из масло-, бензо- и морозостойкой резины. Положение клапана по отношению к седлу, расположенному на входном штуцере, определяется положением мембраны 3, связанной с клапаном рычажно-шарнирным механизмом.
На мембрану сверху воздействует пружина 4, а снизу давление газа. Сжатие пружины регулируется винтом 5, которым осуществляют настройку регулятора на рабочее дав¬ление. В этом случае газ, проходя через клапан, будет его и поступать через выходное отверстие 6 регулятора к газовым приборам.Если выходное давление будет повышаться сверх заданного, то пружина 4 сожмется, мембрана пойдет вверх и через рычажно-шарнирный механизм 7 подаст клапан вниз и уменьшит проход газа через регулятор. В мембрану регулятора вмонтирован предохранительный клапан 8, который работает следующим образом: при закрытом клапане 2 и повышении давления под мембраной сверх установленного ('при отсутствии расхода газа и неплотном закрытии клапана) мембрана, преодолевая действие пружины 4 и пружины 9 предохранительного клапана 5, отойдет от уплотнения 10 и сбросит излишек давления газа через отверстие под верхнюю крышку 12 регулятора, которая соединяется выбросной трубкой с атмосферой.
После настройки регулятора на определенное рабочее давление регулировочный винт 5 закрывается колпачком 13 и закрепляется винтом 14, который пломбируется. Абонентам запрещается производить регулировку давления газа винтом 5.
Для создания нормальных условий работы регулятора давления, когда положение клапана находится в области регулирования, расчетная производительность его должна быть примерно на 20% больше требуемой максимальной производительности регулятора. По этой причине регулятор рекомендуется подбирать так, чтобы он был загружен при требуемой производительности не более чем на 80%, а при минимальном расходе не менее чем на 10%.
РЕГУЛЯТОРЫ ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ
Автоматический регулятор непрямого действия состоит из следующих основных частей: а) задающего устройства, при помощи которого регулятор настраивают на заданную величину давления; б) воспринимающего элемента, который осуществляет перестановку регулирующего устройства; в) измерительного устройства, измеряющего сигнал, полученный от воспринимающего устройства, и сравнивающего его с заданной величиной; г) устройства для усиления сигнала за счет включения вспомогательной энергии; д) исполнительного механизма, перемещающего регулирующий орган (клапан или дроссельную заслонку).
Из автоматических регуляторов давления непрямого действия в газоснабжении получили пневматические регуляторы. Они широко применяются на газораспределительных и газгольдерных станциях, а также на крупных городских и промышленных установках для регулирования давления газа, где не могут быть применены регуляторы давления прямого действия. По этой причине в дальнейшем будут рассмотрены только пневматические регуляторы давления непрямого действия.
Пневматические регуляторы давления. Использование регуляторов давления прямого действия для регулирования высоких давлений газа не представляется возможным из-за тех 1 больших усилий, которые развиваются на мембраннопружинных приводах дрооссельных устройств.
Чтобы сохранить прежние размеры мембран, потребовалось бы их выполнять из более прочных материалов, а это , опять сказалось бы на чувствительности регуляторов и точ¬ности регулирования контролируемого давления.
Для того чтобы не увеличивать прочности мембран и не уменьшать их размеров, применяют пневматические реле, которые уменьшают силы, действующие на рабочие мембраны при использовании регуляторов на высоких давлениях.
Пневматическое реле. Устройство пневматического реле показано на схеме (рис. 85).
Пневматическое реле включается между газопроводом контролируемого давления и рабочей мембраной регулирующего газового клапана.
Назначение реле состоит в том, чтобы снижать высокое
давление и поддерживать это сниженное давление (не выше 1,1 кгс/см 2 ) над рабочей мембраной 9 регулирующего клапана 11 в зависимости от величины регулируемого давления.
На схеме положение частей регулирующего клапана следующее. Газ высокого давления Р1, пройдя газовый кран Л,. фильтр и редуктор, поступает в корпус 8 под золотник реле 7, который находится в закрытом положении.
Давление газа над рабочей мембраной 9 отсутствует, так как оно было сброшено в атмосферу через осевой канал в ниппеле 5, закрепленном на эластичной мембране 6. Под действием пружины 10 газовые клапаны подняты и находятся в открытом положе¬нии. Возможный пропуск газа через золотник 7, за счет недостаточной герметичности закрытия, будет сбрасываться в атмосферу.
При повышении регулируемого давления PS увеличится давление на мембрану реле 1 и она сместится вправо, сжимая пружину 2 и подавая шток 4 с ниппелем 5 к золотнику 7. При достижении давления Рч заданной величины ниппель 5 подойдет своим осевым отверстием к малому конусу золотника 7 и перекроет сброс газа в атмосферу.
Дальнейшее небольшое повышение давления Ру, заставит подвижную систему реле еще сместиться вправо, и тогда ниппель 5 будет открывать золотник 7 и пропускать газ на мембрану 9, которая, прогибаясь вниз, сожмет пружину 10 и несколько закроет двухседельный клапан. Контролируемое давление Рч будет снижаться до заданной величины.
В случае снижения Ps ниже заданной величины, процесс регулирования повторится в обратном порядке.
Настройка пневматического реле на определенное рабочее давление Рч осуществляется величиной сжатия пружины 2 с помощью гайки 3.
Применение пневматического реле позволяет регулировать очень высокие и очень низкие давления газа обычными регулирующими клапанами, обеспечивая при этом большую точность в стабилизации регулируемого давления на заданном уровне.
Пневматическое реле с обратной связью. Реле с обратной связью поаволяет поддерживать заданное давление в контролируемом газопроводе более постоянным и независимым при изменениях расхода газа.
На рис. 86 показано пневматическое реле с обратной связью, у которого между механизмом, воспринимающим контролируемое давление Рч, трубчатой манометрической пружиной и механизмом, регулирующим подачу газа в газопроводе, существуют прямая и обратная связи, вызывающие замедленное перемещение запорно-регулирующих деталей клапана.
В корпусе реле помещается подвижная система, состоящая из двух мембран 2 с подвешенным между ними ниппелем 3, пружины 4, золотника 5 и пружины 6. При работе реле эта подвижная система находится в равновесии под действием сил: водной стороны—давления на мембрану 2 в полости корпуса реле; с другой—действия двух пружин 4 и 6.
При горизонтальном возвратно-поступательном движении этой подвижной системы она принимает три положения, при которых: а)редуцированный и очищенный газ в фильтре 7 и редукторе 5 может поступать в над мембранное пространство привода 9 (см. стрелки), когда система находится в левом положении; б) газ из полости привода 9 может уходить на сброс в атмосферу через отверстие А (система находится в правом положении); в) газ в полости привода запирается (система находится в промежуточном положении).
Допустим, что регулируемое давление Рч по величине ста¬ло несколько меньше заданного. Снижение давления вызовет некоторое сжатие манометрической пружины 1, и она поднимет левый конец заслонки 10. Открывание сопла 11 снизит давление газа на .мембрану 2 в полости, так как поступление газа через калиброванное отверстие в насадке 12 останется прежним, а выход газа через сопло 11 в атмосферу увеличится. Под действием пружины 4 мембрана 2 будет смещаться вправо, и ниппель 3, отойдя от малого конуса золотника 5, откроет проход газу из полости привода 9 в атмосферу (через ниппель, затем между мембранами 2 в отверстие А). Под действием пружины привода 13 регулирующий клапан К откроет проход газа, и давление будет повышаться.
Повышение давления Pi вызывает закрывание сопла 11 увеличение давления в полости N и смещение подвижной системы влево. Когда ниппель сядет на малый конус золотника 5, сброс газа из полости привода 9 в атмосферу прекратится и регулирующий клапан перестанет открываться. Давление увеличится до заданной величины и может несколько ее перейти за счет инерции регулятора. В этом случае подвижная система 'будет смещаться еще влево, сместит большой конус золотника 5 и увеличит проход в седле 14, в результате чero увеличится проход газа из редуктора 8 в над мембранное пространство 9 и регулирующий клапан закроется.
Регулируемое давление Ps теперь будет падать, а процесс регулирования повторяться с определенной амплитудой колебания давления. Эти колебания могут в значительной степени усиливаться неравномерностью расхода газа в газопроводах. Для уменьшения этих колебаний в пневматическое реле вводится обратная связь, которая вызывает замедление перестановок, а в некоторых случаях даже обратные перестановки дроссельного устройства в регулирующем клапане. Обратная связь осуществляется манометрической пружиной-сильфоном 15, .которая открытым концом соединена с полостью привода 9, а глухим — связана с коромыслом 16, к которому шарнирно присоединен правый конец заслонки 10. Действие на сопло 11 обратной связи сильфона 15 противоположно действию прямой связи от трубчатой манометрической пружины.
Обратная связь способствует более плавной работе регулирующего клапана и выравниванию контролируемого давления.
Степень влияния прямой и обратной связи на процесс регулирования давления устанавливается путем изменения положения сопла 11 по горизонтали под заслонкой 10.
Настройка реле на определенное давление производится с помощью кнопки 17, связанной системой зубчатой передачи с манометрической пружиной и позволяющей изменять ее положение.
В зависимости от упругости трубчатой манометрической пружины 1 регулирующие клапаны этого типа могут работать при давлениях от 3 до 30 кгс/см 2 .
Регуляторы давления прямого действия. Обзор типов и функций.
Регулятор давления прямого действия - это автоматически действующее автономное устройство, состоящее из регулирующего клапана, снабженного приводом, управляемым чувствительным элементом, реагирующим на давление рабочей среды, без применения постороннего источника энергии
Принцип работы
Регуляторы давления прямого действия представляют собой конструкции автоматически действующей арматуры, снабженные чувствительным элементом, управляющим приводом плунжера. Чувствительным элементом (датчиком командных сигналов) служит резиновая мембрана или поршень. Силовое (компенсирующее) воздействие на регулирующую систему, включающую чувствительный элемент, осуществляется грузом или предварительно настроенной пружиной. Действие регулятора основано на использовании энергии рабочей среды, транспортируемой по трубопроводу. С изменением давления на контролируемом участке изменяется степень открытия регулирующего органа регулятора в сторону, необходимую для восстановления исходного давления.
Классификация регуляторов давления прямого действия
Можно выделить три категории регуляторов давления, зависимости от того, в какой точке регулируется давление:
1. Регуляторы давления «после себя» (редукционные клапаны) – регулируют давление в точке, расположенной за клапаном, путем перекрытия потока среды для обеспечения заданного значения давления. Отбор среды в точке регулирования может быть как внешним (с помощью импульсной трубки), так и внутренним, через технологические отверстия внутри клапана. Регуляторы давления «после себя» предназначены для защиты от высоких давлений технологической арматуры и аппаратуры низкого давления, расположенных за клапаном. система будет полностью перекрыта (исключается работа «на нагрузку»).
2. Регуляторы давления «до себя» (перепускные клапаны) — это устройство, предназначенное для поддержания давления среды до клапана на требуемом уровне путём перепуска её через ответвление трубопровода или байпас. Они предназначены защиты систем энергоснабжения от нарастания дифференциального или избыточного давления путем перепуска излишнего количества теплоносителя из подачи в обратный трубопровод. Также при использовании перепускного клапана на байпасе насоса кроме регулирования напора обеспечивается работа насоса даже если система будет полностью перекрыта (исключается работа «на нагрузку»).
3. Регуляторы перепада давления (дифференциального давления) - предназначены для поддержания постоянного перепада давления на оборудовании путем ограничения избыточного давления при частичном закрытии двухходового регулирующего клапана, который таким образом принимает на себя повышенную потерю давления. Применяются в системах центрального теплоснабжения, на распределительных сетях центрального отопления, как балансировочная арматура в местах с различными доступными давлениями.
Конструктивные особенности
Регуляторы давления имеют сравнительно простую конструкцию и, как правило, не требуют посторонних источников энергии, длинных электро- или пневмокоммуникаций. Груз или пружина обеспечивают компенсирующие (силовое) воздействие на подвижную систему, заставляя плунжер перемещаться, а мембранный или поршневой привод ограничивает перемещение плунжера в зависимости от давления среды на контролируемом участке.
Наиболее часто регулятор давления состоит из седельного клапана, снабженного мембранным пружинным приводом, рычажно-грузовые привода, которые применялись ранее, в настоящий момент встречаются очень редко и как правило на старых моделях. Мембрана в данном случае играет роль не только привода, но и роль чувствительного элемента. Производители регуляторов в зависимости от расчетов и поставленных задач применяют формованные мембраны различных диаметров. Здесь необходимо учитывать, что мембрана большого диаметра образует элемент повышенной чувствительности, при котором малые изменения давления будут приводить к резким перемещениям плунжера с большой амплитудой колебаний, когда возникает опасность работы регулирующего органа с ударами плунжера о седло. Малая плоская мембрана в свою очередь создает не только менее чувствительную систему, но благодаря повышенной жесткости несколько приближает астатический характер работы регулятора с резкими перемещениями плунжера к более спокойной работе пропорционального регулятора. Благодаря этим свойствам рабочих мембран разного диаметра имеется возможность выполнить регуляторы с различными динамическим и максимальным диапазонами регулирования давления. При использовании мембраны большего диаметра мы получаем меньшее максимальное значение регулируемого давления и динамический диапазон, а при меньшем диаметре рабочей мембраны соответственно более высокие значения. Плюс к этому на данные величины существенное влияние оказывают и применяемые рабочие пружины.
Как избежать сбоев в работе Помогут правильная настройка газового котла и регулярное обслуживание
Газовый клапан необходим для подачи газа на горелочное устройство агрегата. С помощью настройки газового клапана можно регулировать объем подаваемого топлива. Это дает возможность сделать агрегат более экономичным или повысить мощность устройства. Таким образом, пользователь в зависимости от ситуации имеет возможность скорректировать производительность своего агрегата.
Как работает газовый клапан?
В большинстве газовых агрегатов установлен клапан SIT. Он включает следующие элементы:
- измерительный штуцер давления газа на выходе клапана;
- регулировочный винт минимального и регулировочная гайка максимального расхода топлива;
- крышка;
- измерительный штуцер давления на входе.
Клапан газового котла состоит из запирающей и модуляционной катушки. При подаче напряжения в 220 В на запирающий клапан к горелке подается минимальный объем газа в соответствии с заводскими настройками. Затем напряжение передается на модуляционную катушку. Процессор в зависимости от рабочего режима (мощности) подает напряжение с разной частотой модуляции, регулируя количество газа, проходящего за единицу времени.
Для настройки газового клапана котла на минимальную мощность понадобятся дифференциальный манометр, гаечный ключ и отвертка. Процесс настройки включает следующие этапы:
- Снимают защитный колпачок, закрывающий дифференциальные винты клапана.
- Открывают штуцер для замера давления газа, подаваемого на горелку – против часовой стрелки поворачивают запирающий винт на 1,5-2 оборота.
- Подключают к входному штуцеру шланг манометра.
- Включают режим отопления и отключают один провод модуляционной катушки – это нужно, чтоб клапан давал газ на горелку по минимуму, что будет соответствовать минимальной мощности агрегата.
- Согласно показаниям манометра, настраивают минимальное давление газа на горелке. Для этого вращают внутренний винт, находящийся под защитным колпачком. При этом фиксируют внешнюю гайку.
Динамическое давление топлива на входе газового клапана находится в пределах от 1,4 до 2,4 кПа. Если измерения показали, что давление выходит за указанные пределы, необходимо вызвать специалистов-газовиков.
В заводском диапазоне мощности перенастраивать газовый клапан вручную нет необходимости. Это требуется для того чтобы перевести агрегат на мощность ниже или выше показателей, заявленных в инструкции. Часто настройка клапана нужна, если производительность устройства не соответствует отапливаемой площади дома или квартиры.
Настройка газового клапана при «тактовании» котла
Такую проблему как «тактование» газового котла можно решить путем настройки газового клапана. Обычно она возникает, если мощность агрегата значительно превышает необходимую для данной площади.
Чтобы исключить «тактование» устройства в режиме отопления, необходимо снизить давление на выходе. Это выполняется с помощью вращения регулировочного винта против часовой стрелки.
Для прекращения «тактования» в режиме ГВС уменьшают максимальное давление. Это решается методом вращения регулировочной гайки против часовой стрелки.
Однако в более современных моделях «тактование» устраняется автоматикой. Например, настройка газового клапана котла Будерус происходит с помощью блокировки тактов:
- удерживают кнопку с гаечным ключом в течение 5 сек;
- выбирают продолжительность интервалов от 0 до 15 мин с помощью кнопок со стрелочками.
Рекомендуется, чтобы настройки такого рода проводили только специалисты сервисного центра, особенно, если котел находится на гарантии. Иначе, если Вы испортите клапан, компания обнулит гарантийные обязательства и Вам придется покупать новую деталь.
Теплый дом Настройка давления газа котлов Navien
Настройка давления газа котлов Navien
Для настройки давления газа котлов Navien (Ace, Deluxe, Prime, Atmo) потребуется дифференциальный цифровой манометр со шкалой мм h3O
Таблица со значениями давления газа для различных моделей котлов Navien приведены в конце
1.При выключенном котле присоединить манометр к контрольному штуцеру газового давления на горелку
2. Включить котел
3. Установить DIP переключатель 3 на плате управления в положение «ВКЛ», что будет соответствовать минимальной нагрузке.
4. Установить минимальное давление газа согласно таблице винтом для настройки мин.давления (Увеличение — против часовой стрелки, уменьшение — по часовой)
5. Перевести DIP переключатель 3 на плате управления в положение «ВЫКЛ» (Основное состояние)
6.Установить DIP переключатель 2 на плате управления в положение «ВКЛ», что соответствует максимальной нагрузке
7. Установить максимальное давление газа в соответствии с таблицей регулировочным винтом (Увеличение — против часовой стрелки, уменьшение — по часовой)
9. Отсоединить шланг диффманометра от штуцера газового клапана
10. Перевести DIP переключатель в положение «ВЫКЛ» (Основное состояние)
11. Включить котел
12. Проверить герметичность газового клапана (Штуцера). Если появились аномальные шумы, требуется проверить котел на утечку газа.
Какие бывают регуляторы давления газа и зачем они нужны
Регулятором называют действующее автономное устройство, автоматически отвечающее за уменьшение или увеличение (регулировку) расхода газа.
Этот механизм незаменим не только на промышленных предприятиях, но и в быту.
Автомобилисты, кто пользуется газовыми балонами, вместо бензина, также знакомы с данным устройством. Сжиженный газ в данных системах предварительно направляется в редуктор пропан-бутановой смеси, после чего поступает в карбюратор или инжектор.
Все регуляторы по своим конструктивным особенностям состоят из основных элементов: мембранный клапан(регулятор), управляющий спец механизм и приспособление, измеряющее изменения давления.
Существует несколько основных параметров современных регуляторов давления газа.
Способ управления
- Прямое действие
- Непрямое/автоматическое действие (использует внешнюю дополнительную энергию: воду, электрический ток или сжатый воздух)
Мембранное давление
- Статическую группу создает пружина, которая и давит на мембрану. Этот тип работает путем введения жесткой связи обратного действия.
- Астатический тип использует давление с помощью специального груза. Регуляторы такого вида лучше использовать там, где есть самостоятельное выравнивание, например газовые сети с низким давлением в большой емкости.
- Изодромное давление происходит при помощи используемого потока газа. В настоящее время самыми популярными регуляторами в промышленных производствах являются устройства с пневматическим принципом работы, они практически не имеют недостатков. Высокая производительность и наивысшая степень безопасности в использовании (минимальная вероятность взрыва или возгорания) - поистине важная заслуга данных регуляторов.
Способ поддержки давления
- При поддержке "до себя" происходит автоматизированное регулирование давления до места нахождения в трубопроводе.
- Поддержка "после себя" отвечает за регулировку давления трубных отрезков, которые располагаются после данных устройств.
По типам клапана существует разграничение
- Односедельный
- Двухседельный
- С мягкими/жесткими седлами
Тип регулятора
- Промышленный тип имеют приборы для нагрева воды или любые другие (с потреблением газа)
- Бытовой (с низким газа-давлением и малой пропускной силой)
Так же существуют комбинированные регуляторы. Российский рынок продаж изготавливает эти регуляторы давления газа под названиями: РДНК- 400, РДГД-20, РДСК-50, РГД-80. Это говорит о наличие сбросного и запорного клапана, который находится в самом корпусе регулятора.
Редукционный клапан давления
Газ или жидкость в магистральном трубопроводе часто находится под более высоким давлением, чем это нужно для того или иного потребителя. Для того, чтобы снизить его до требуемой величины, применяют редукционный клапан. Такие устройства используют также стабилизации напора в гидравлических системах различных приводов на транспорте и в технологических установках.
Назначение
Основные области применения гидравлических редукционных клапанов следующие:
- Водопроводные распределительные сети.
- Насосные установки.
- Оросительные системы.
- Противопожарные комплексы.
Правильно подобранный редукционный клапан дает следующие преимущества:
- Защита от резких перепадов напора, гидравлических ударов.
- Оптимизация расхода ресурсов, снижение издержек.
- Снижение уровня вибрации, нежелательных акустических эффектов (так называемое «гудение труб»).
Специалисты рекомендуют устанавливать редукционный клапан в следующих случаях:
- При давлении в магистрали выше 5 атм. (бар)
- Защита от бросков.
- Сложные распределительные системы в многоэтажных зданиях.
- Потребность в секциях водопроводной сети с разным напором.
Чтобы стабилизировать давление в отопительных контурах, применяется подпиточный клапан.
Виды регулировочных клапанов
Устройства разделяют на две подгруппы. Они различаются конструкцией и принципом действия. Это:
- Редукторы прямого действия. Давление в магистрали непосредственно действует на чувствительные элементы, управляющие регулировкой. Работает за счет энергии напора в магистрали.
- Редукторы непрямого действия. Давление воспринимается чувствительным элементом и предается на механизм, сравнивающий значение с заданным и управляющий исполнительными органами. Этот механизм может использовать электронные компоненты и требовать дополнительного питания.
Редукторы разделяются также по виду рабочей среды:
- Воздух.
- Газ (углекислый, ацетилен, аргон, кислород и т.п.).
- Масло в системах смазки и гидравлики.
- Вода в сетях водоснабжения и канализации.
- Теплоноситель в системах отопления.
Рабочая среда влияет на выбор конструкции, материалов, диапазонов регулировки.
Гидравлические редукторы, в свою очередь, бывают поршневые и мембранные. Поршневые отличаются тем, что изменения входного давления не влияет на стабильность параметров на выходе. Однако устройства такого типа намного более чувствительны к загрязнениям и посторонним включениям в потоке рабочей среды и требую установки фильтров. В мембранных редукторах перепады на входе сказываются на постоянстве напора на выходе, они неприхотливы и допускают значительные загрязнения жидкости. Для срабатывания им не требуется существенный перепад входного давления.
Клапан редукционный пружинного типа применяется для управления напором при подаче газов, воды, пара, растворов теплоносителей.
Функции редукционного клапана
Для чего нужен водный или газовый редукционный клапан? Редуктора выполняют следующие основные функции:
- Понижение давления в отводе от главной магистрали.
- Стабилизация выходного давления на заданном уровне.
- Ограничение выходного давления до заданной величины.
Сложные современные устройства выполняют и другие функции, такие, как передача данных в централизованную систему управления, доочистка рабочей среды от механических загрязнений и других посторонних включений.
Как работает редукционный клапан
Рассмотрим принцип работы прямых и непрямых редукционных клапанов.
Для этого будет рассмотрены схемы простейших редукционных клапанов.
Редукционный клапан прямого действия
Основные элементы конструкции редуктора прямого действия следующие:
- Цилиндрический корпус имеет входной и выходной патрубок.
- По корпусу изнутри двигается золотник переменного сечения. Он может перекрывать входной и выходные патрубки.
- Сверху золотник поджат пружиной.
- Сила прижима задается регулировочным винтом.
Давление на входе (Рн) не вызывает перемещения золотника. Когда давление на выходе (Рред) падает ниже заданной величины, пружина отжимает сердечник вниз, открывая выходной патрубок и соединяя его с центральной камерой. Рн начинает действовать и на нижний срез золотника, отжимая его вверх, сжимая пружину и перекрывая выходной патрубок. По мере расхода жидкости потребителем в выходном патрубке Рред снижается, и пружина снова отжимает поршень вниз. Рабочий цикл повторяется.
Рн воздействует на обе поверхности камеры золотника с равной силой и не вызывает его продольного перемещения. Рред и сила пружины действуют на поршень в противоположных направлениях. Сила воздействия пружины задается регулировочным винтом. Чем сильнее он завернут, тем больше эта сила и тем большее давление воды требуется, чтобы ее уравновесить.
При росте Рред поршень будет двигаться вверх, постепенно перекрывая просвет входного патрубка, при этом будет снижаться и подача рабочей среды, снижая, таким образом, Рред.
Как только Рред снизится до заданной величины, пружина начнет отжимать поршень вниз, увеличивая просвет и поступление рабочей среды. Рн начнет увеличиваться. Одновременно этот механизм выполняет и функции обратного клапана.
При большом расходе клапан прямого действия будет вызывать большие колебания расходы продукта.
В этом случае разумно применить редукционный клапан давления непрямого действия.
Редукционный клапан непрямого действия
Применение таких устройств дает возможность снизить зависимость колебаний давления от расхода.
Устройство редуктора непрямого действия заметно сложнее, чем прямого.
Позиция золотника определяется равнодействующей Рред и давления в верхней камере.
Если давление в отводном канале превышает заданный регулировочным винтом уровень, шарик отжимается вправо, открывая путь рабочей среде в дренаж. Возрастает расход, и благодаря потерям в дросселирующей заслонке давление в верхней камере начинает снижаться. После сброса в дренаж некоторого ее количества давление падает до заданного, и пружина отжимает шарик к седлу, перекрывая клапан. Золотник перемещается в сторону меньшего давления, перекрывая входной патрубок, и Рред также снижается до установленной величины.
Отличие редуктора от предохранительного клапана
Конструктивно эти два вида запорных устройств имеют очень много общего. Они походи внешним видом корпусов, рабочее давление и там, и там задается регулировочными винтами, изменяющими степень сжатия пружин, подпирающих клапаны. Много общего и в их схемах с точки зрения гидравлики.
Различия заключаются в назначении, принципе действия и особенностях внутреннего устройства.
Управляется он входным давлением (Рн). Для него не имеет значения расход рабочей среды, проходящей через клапан. Это устройство эпизодического действия.
Редуктор же должен независимо от Рн поддерживать постоянное давление на выходе. Он управляется выходным Рред. Постоянный расход имеет большое значение для функционирования этого типа устройств. Действуют они не эпизодически, ка предохранителя, а постоянно.
Ремонт и неисправности масляного клапана
Конструкция редуктора достаточно простая, это обуславливает его высокую отказоустойчивость и долгий срок эксплуатации. Обычно это бывает связано с износом деталей устройства.
Специалисты выделяют следующие основные неисправности редукторов:
- Не создается необходимое давление на выходе. Чаще всего причиной неисправности служит пружина. По мере использования и естественного старения пружина теряет упругость. Из-за меньшей силы сжатия клапан никогда до конца не закрывается, и заданный напор не достигается. То же самое может произойти, если при ремонте или обслуживании поставить похожую по размерам пружину, обладающую меньшей упругостью. Неопытные или недобросовестные мастера часто допускают такую оплошность.
- На выходе получается слишком высокое давление. Это бывает вызвано наличием посторонних предметов внутри механизма, мешающих ему своевременно отсекать подачу. Это могут быть частицы стружки, других механических загрязнений или отложения отработавшего свой срок и загустевшего масла. Такие загрязнения могут привести к заклиниванию деталей клапана и к полному выходу механизма из строя.
Ремонт и обслуживание можно проводить только при полностью отключенных насосах, двигателях и сбрасывании давления в магистрали до нуля. Нарушение этого правила может привести к выбросу масла и деталей клапана, травмированию персонала и повреждению оборудования.
Ремонт заключается в демонтаже клапана и его полной разборке для дефектации.
Все детали, включая корпус, надо тщательно промыть в растворителе от остатков масла и других загрязнений и осмотреть. Поврежденные детали следует заменить. Если нет уверенности в упругости пружины, лучше заменить и ее, не дожидаясь сбоев в работе.
Такое обслуживание обычно приурочивают к плановому ремонту двигателя, связанному с частичной разборкой. Если на внутренних поверхностях корпуса или на поверхности золотника обнаружены царапины или задиры, лучше заменить весь клапан.
Как устанавливать и регулировать
В разветвленных сетях водоснабжения редукционная арматура ставится на входе в квартиру. Они позволяют компенсировать перепады напора, связанные с неравномерным расходом воды на разных этажах здания и стабилизировать напор для конечных потребителей.
При планировании и монтаже рекомендуется учитывать следующее:
- При отсутствии специальных предписаний изготовителя клапан монтируется в разрыве любой трубы, как вертикальной, так и горизонтальной.
- Если контрольные манометры не входят в конструкцию устройства, то их следует установить до редуктора и сразу после него. Это позволит визуально контролировать параметры на входе и исправность прибора.
- Если отрезок трубопровода, оснащенный редуктором, имеет строгие ограничения по максимальному давлению, то следом за редукционным предусматривают предохранительный клапан, сбрасывающий избыток давления в нестандартной ситуации.
- Если выбрана поршневая конструкция редуктора- перед ним обязательно должен стоять фильтр механической очистки. Он защитит высокоточные детали механизма от повреждения частичками ржавчины, песка и минеральных отложений.
- Если вода сильно загрязнена, например, в случае старой и изношенной водораспределительной сети, могут потребоваться дополнительные фильтры, снижающие минерализацию воды.
- При выборе типа присоединения на стороне низкого давления (до 5 атм) предпочтительным является резьбовой.
Фланцевые соединения более надежны, но в бытовой сети их преимущества проявляются слабо. Сварные соединения обладают максимальной надежностью, но низкой ремонтопригодностью. Для требующего периодического обслуживания и замены оборудования — это не лучший выбор.
Обслуживание и ремонт
Обслуживание редукторов требуется минимальное. Если изготовитель указал периодичность осмотра, то лучше соблюдать ее и в указанное время разбирать клапан проверять состояние его деталей и при необходимости заменять изношенные. Если на водопроводном редукторе стоят два манометра- до и после, то по их показаниям можно точнее определить время внепланового обслуживания устройства. Своевременное плановое обслуживание позволяет избежать внепланового, экстренного ремонта, вызванного поломкой.
Читайте также: