Как работает тнвд бензинового двигателя тойота виста
Как работает тнвд бензинового двигателя тойота виста
Ну, вот настали очередные разборки с ТНВД. Началось (вернее продолжилось) с того, что попалось пару насосов не создающих (
2в.) нормальное давление (
2,5в.) на ХХ. Не смотря на многочисленные заявления, что плунжер в верхней (нагнетательной) части не изнашивается, опытным путём было определено, изнашивается и не так уж и редко. На испытуемом насосе было заменено всё, кроме плунжера, результатов не дало и только замена плунжера смогло восстановить работоспособность, при обратной замене всего остального работоспособность не пострадала. При этом износ (по плунжеру) был не такой и большой. Замер микрометром показал износ в 0,03мм.(6.97). Замена, на плунжер с износом 0,01мм. (6.99), решила вопрос с давлением. Заодно было решено (для себя) окончательно разобраться с конструкцией ТНВД, так как вразумительных сведений ни здесь (на форуме), ни в книге, ни у “авторитета всех авторитетов” (В. Бекренёва) найти не удалось (поправьте, если я не прав). Были общие обзоры (предположения), не более того.
И так. Был разобран ТНВД и тщательно изучен.
Начнём с подачи топлива и по ходу движения его. Топливо подаётся, сами знаете куда, далее оно проходит через фильтрик, на регулятор давления и в обратку. Отсюда же (т.е. до фильтрика), без всяческой фильтрации, топливо подаётся в пространство между “шайбой с дырочками” и эл.клапаном регулирования давления. Здесь топливо опять разветвляется, через круговую сеточку на эл.клапане поступает внутрь эл.клапана и через запорный клапан, через “шайбу с дырочками” (через те самые дырочки) поступает в зону создания высокого давления. В момент “создания высокого давления” запорный клапан закрывает зону высокого давления и плунжер, через обратный клапан высокого давления, проталкивает топливо в топливную рейку. Через другую ветку топливо подаётся на ФХП и через канал в зазор между плунжером и корпусом. Здесь, в верхнем положении плунжера, он, с помощью проточки в нём, захватывает топливо и транспортирует (если так можно сказать) его к сальнику. Таким образом, происходит смазывание пары плунжер-корпус. Отсюда и бОльшее, чем в насосе AZ/JZ (где данной проточки нет), количество топлива, проникающее через эту пару, для снятия сальником. Из зоны сальника топливо поступает в обратку, где соединяется с топливом из регулятора давления.
Далее началось сравнение с насосом AZ/JZ. В насосах AZ/JZ данной проточки нет, но смазывание пары плунжер-корпус, при этом, не страдает и работает пара гораздо дольше “нашего”. Значит и в “наших” насосах это можно исключить, для уменьшения количества топлива проникающего для “снятия” сальником и потенциально готового протечь.
Для проверки был взят плунжер от AZ/JZ, без проточки, и доработан (уменьшена его длина). После установки насоса на авто, проверено количество топлива проникающего в зону сбора сальником. Замер показал уменьшение количества топлива проникающего в зону сбора сальником, как минимум в два раза, при этом сам канал поступления топлива для смазки не глушился. Высокое давление в норме, производительность в норме. Пройдено пока около 100км. Не замечено ни каких изменений в работе. Дальнейший эксперимент будет заключаться в полном перекрытии канала, с замером топлива снимаемого сальником в обратку и приближения в этом плане к насосам AZ/JZ.
Для чего весь этот сыр-бор?
Ну, первая половина была посвящена изучению конструкции и пониманию работы ТНВД, для дальнейшего диагностирования и ремонта (и устранению неисправности на конкретном насосе, так как плунжера от “родного” насоса “лишнего” не оказалось, а от AZ был).
Вторая (доработка), для приближения ресурса “нашего” насоса к ресурсу насоса AZ/JZ. Я предполагаю, что этот ресурс связан не с повышенной износоустойчивостью пары плунжер-корпус AZ/JZ и не с особой точностью изготовления, а с тем количеством топлива, которое может (в случае протекания сальника) проникать через эту пару. Даже, если сальник/плунжер, износились, то-то количество топлива, которое протечёт через них в подклапанное пространство испариться, не причинив тех последствий, как на “наших” насосах.
Кроме того, это может пригодиться тем, кто самостоятельно пытается изготовить плунжер.
У кого какие мысли по этому поводу. Только просьба с аргументацией, а не только “я так думаю”.
_________________
Лучше молчать и показаться дураком, чем заговорить и развеять все сомнения.
Никогда не спорьте с идиотами. Вы опуститесь до их уровня, где они вас задавят своим опытом.
_________________
Лучше молчать и показаться дураком, чем заговорить и развеять все сомнения.
Никогда не спорьте с идиотами. Вы опуститесь до их уровня, где они вас задавят своим опытом.
написано красиво но желательно сделать мурзилку с картинками куда чего как, так сказать фото в студию
Добавлено спустя 1 минуту 15 секунд:
у меня кстати два насоса есть у которых похоже плунжер помер.
_________________
Toyota Vista 98г. 3S-FSE
_________________
Лучше молчать и показаться дураком, чем заговорить и развеять все сомнения.
Никогда не спорьте с идиотами. Вы опуститесь до их уровня, где они вас задавят своим опытом.
_________________
Toyota Vista 98г. 3S-FSE
-0,01мм (6,99);
на пределе (будет работать или нет, лотерея)
-0,02мм (6,98)
работоспособность маловероятна
-0,03мм (6,97)
Существенно влияет износ ответной части (корпуса), к сожалению, нутромера у меня пока нет.
_________________
Лучше молчать и показаться дураком, чем заговорить и развеять все сомнения.
Никогда не спорьте с идиотами. Вы опуститесь до их уровня, где они вас задавят своим опытом.
_________________
Toyota Vista 98г. 3S-FSE
Последний раз редактировалось 553 26 фев 2017, 09:52, всего редактировалось 1 раз. |
убрал цитату |
_________________
Лучше молчать и показаться дураком, чем заговорить и развеять все сомнения.
Никогда не спорьте с идиотами. Вы опуститесь до их уровня, где они вас задавят своим опытом.
Что такое ТНВД и его роль в работе двигателя
Топливный насос высокого давления (Injection pump в английских источниках) — узел системы питания автомобиля. Родоначальник ТНВД - Роберт Бош. Изначально устанавливался исключительно на дизельных силовых агрегатах. На легковых машинах стал использоваться с конца 30-х годов XX века. Современные автогиганты применяют этот технически сложный блок на бензиновых моторах, имеющих распределенный впрыск топлива.
Что такое ТНВД и для чего он нужен?
ТНВД — что это такое в машине? Условно можно сравнить с сердцем человека — узел, обеспечивающий бесперебойную циркуляцию крови (топлива) по организму (топливной системе). На деле назначение блока несколько шире:
- точное дозирование подаваемого топлива, где величина порции зависит от нагрузки;
- нагнетание топлива в форсунки;
- определение момента впрыска горючего в цилиндры.
Так как работа дизельных агрегатов сопряжена с высокими нагрузками, то подача солярки производится под высоким давлением, обеспечивающим полное сгорание. Бензиновые моторы работают при значительно меньшей нагрузке. Поэтому использование топливного насоса целесообразно в системах с прямым впрыском горючего (не имеющих впускного коллектора).
Подводя промежуточный итог, можно сказать: что такое ТНВД в автомобиле — это способ увеличить КПД двигателя, снизить расход потребления топлива.
Устройство и принцип работы
Схематически устройство простого рядного ТНВД можно представить следующим образом:
- поршень (плунжер), сопряженный с цилиндром (втулкой), которые работают как единое целое — плунжерная пара;
- канавки для подачи топлива к плунжерным парам;
- кулачковый вал с центробежной муфтой; вращение вала происходит посредством ремня ГРМ;
- толкатели плунжера, на которые давит кулачковый вал;
- возвратные пружины, обеспечивающие возврат плунжера;
- клапаны нагнетательные;
- штуцеры;
- рейки зубчатые;
Представляя устройство узла, несложно понять его принцип работы, схожий с работой двухтактного ДВС:
- вращается кулачковый вал;
- кулачки вала давят на толкатели плунжера;
- происходит движение плунжера по цилиндру;
- повышение давления приводит к открытию нагнетательных клапанов;
- топливо поступает через клапан к форсункам.
Конструкция насоса предусматривает подачу к форсункам не всей воздушно-топливной смеси, но только строго определенной порции. Остатки отправляются в сливные клапаны. Центробежная муфта обеспечивает подачу дизельного горючего в конкретный момент. Всережимный регулятор необходим для определения количества смеси: давление на педаль газа увеличивает объем, ослабление — уменьшает.
От механики к электронике
Механические насосы постепенно вытесняются агрегатами с электронной начинкой. Устройство и принцип работы узлов отличается тем, что все происходящие в ТНВД процессы регулируются электроникой. Здесь обеспечение максимально точного количества смеси, моментальная реакция на малейшее изменение динамики. Механическим насосам такие параметры недоступны. Электроника позволила снизить циклы нестабильного сгорания топлива, уменьшить нестабильность работы дизеля на холостом ходу.
Следующий шаг — двухфазный впрыск топлива, обеспечивающий полноту сгорания. Следствие — уменьшение выброса в атмосферу токсичных продуктов и увеличение КПД двигателя. При этом система контролирует:
- положение педали газа;
- частоту вращения распредвала двигателя;
- температуру двигателя (охлаждающей жидкости);
- скорость движения;
- величину подъема иглы форсунки;
- давление наддува воздуха;
- температуру воздуха на впуске;
- работу свечей накаливания.
ТНВД с электронными блоками управления снабжены программами самодиагностики, значительно расширяющими возможности использования насосов. Так, при возникновении ряда отказов система будет работать, обеспечивая движение транспортного средства. Полный отказ происходит при выходе из строя микропроцессоров.
Виды ТНВД
В машиностроении используются следующие виды ТНВД:
- рядные;
- распределительные;
- магистральные.
По принципу действия ТНВД делят:
- непосредственного действия с механическим приводом плунжера;
- с аккумуляторным впрыском.
Конструкция агрегатов различна, но неизменным является основной рабочий узел — плунжерная пара.
Рядные ТНВД используются на тяжелых и средних грузовиках, активно применяются в машиностроении. Неоспоримое преимущество — способность функционировать на топливе низкого качества. Простота конструкции — это надежность и неприхотливость в обслуживании. В рядных моделях количество плунжерных пар соответствует количеству цилиндров. Недостаток — громоздкость.
В распределительных насосах одна или две плунжерные пары (зависит об объема двигателя) обслуживают все цилиндры. Такая схема позволяет значительно уменьшить габариты и массу узла и обеспечивает равномерную подачу топливной смеси. Применяют агрегаты этого типа на легковых автомобилях. Популярные модели - Bosch, Lucas. Распределительные ТНВД различаются по исполнению кулачкового привода: торцевой, внутренний или внешний. Последний вариант практически не производится. Недостаток распределительных насосов — недолговечность.
Магистральные ТНВД имеют отличную от предыдущих вариантов схему. Нагнетание топлива производится плунжерами (от одного до трех), приводимыми в движение кулачковой шайбой либо валом. Дозирующий клапан отвечает за регулировку подачи топлива. Открытие и закрытие клапана обеспечивается электроникой. Агрегаты этого типа используются в топливной системе Common Rail.
Как понять, что ТНВД неисправен
Производители постоянно улучшают качество насосов, проводя испытания агрегатов в сборе и отдельных элементов. Но от возникновения неполадок никто не застрахован. Протестировать ТНВД, напичканный электроникой, без специального оборудования и программного обеспечения не представляется возможным. Как же понять, что проблемы возникли именно с этим узлом? Общие признаки таковы:
- резкое увеличение расхода топлива;
- проблемы с запуском двигателя;
- выхлопные газы черного цвета;
- едкий запах и повышенная дымность выхлопа;
- регулярное соскальзывание ремня ГРМ;
- утечки топлива;
- падение мощности ДВС;
- нестабильная работа мотора на холостых обортах.
Основная причина поломок — загрязнение плунжеров насоса (некачественное топливо, смазка и т. д.). Опасна для микронных допусков плунжера и вода, которая может содержаться в горючем.
Подводя итоги, можно сказать, что при соблюдении несложных правил эксплуатации (своевременный сервис, использование качественных ГСМ), ТНВД — надежный узел, позволяющий экономно расходовать топливо.
Топливный насос высокого давления
Сегодняшнее поколение водителей в своем большинстве ничего не слышали о тракторе ДТ-54, выпущенном на советских заводах количеством под миллион экземпляров. Вопрос на засыпку: что общего между ним, грузовым автомобилем КАМАЗ и японским джипом NISSAN SAFARI? Трактор, грузовик и легковой внедорожник.
Даже двигатели разнотипные: два первых транспортных средства оснащении дизелем, а Ниссан работает на бензине. Оказывается, что касается всех названных двигателей, на двигатель установлен топливный насос высокого давления (ТНВД).
Первым советским автомобильным двигателем с ТНВД был дизель «Коджу» (Коба Джугашвили), разработанный для ярославского грузовика Я-5. Работы по проектированию начались в 1931 году в одной из «шараг», организованных в те времена для некоторых представителей технической интеллигенции.
Здесь под руководством начальника КБ Н. Р. Бриллинга и был создан дизельный двигатель, окончательно доведенный к 1935 году и получивший название «НАТИ-Коджу». На нем был установлен рядный ТНВД, изготовленный на Самарском карбюраторном заводе. В силу ряда причин Я-5 не пошел в серию. Однако все наработки в дальнейшем были использованы на последующих двигателях.
Функции ТНВД
Рассматриваемое устройство используется в двигателях внутреннего сгорания (ДВС), оснащенных впрыском топлива. В основном это дизели, но, с появлением инжектора, установка ТНВД стала применяться и на бензиновых моторах. Служит он для того, чтобы подать на форсунки горючее с высоким давлением.
Причем, задача, которую выполняет этот прибор, не сводится только к одной функции. Горючее должно подаваться в определенном количестве и в нужный для каждого цилиндра момент времени.
Необходимо уточнить место ТНВД в системе питания. Высоконапорный насос служит для увеличения давления и располагается в середине топливной системы ДВС (между баком и подающими форсунками).
Горючее к нему подается электрическим насосом, расположенным снаружи или внутри топливного бака. Его давления хватает, чтобы транспортировать топливо к первичной (низконапорной) полости ТНВД. А в камеру сгорания солярка впрыскивается форсунками.
Разновидности насоса
Как известно, существует несколько видов топливного впрыска:
- Моновпрыск — когда вместо карбюратора на всасывающий коллектор устанавливается одна общая форсунка. Сегодня практически не применяется.
- Распределенный (многоточечный). Перед каждым цилиндром установлена своя форсунка, причем горючее подается не в цилиндр, а во впускной коллектор (непосредственно перед клапаном). Момент впрыска задается обычно электроникой. Ей же регулируется и объем подачи горючего.
- Прямой или непосредственный впрыск. Горючее впрыскивается сразу в цилиндр двигателя (топливно-воздушная смесь образуется в процессе такта всасывания).
Для каждого вида впрыска применяются и соответствующие разновидности топливного насоса высокого давления. Известны 3 вида этих устройств:
- Рядный прибор — представляет собой несколько секций одинаковых насосов, каждый из которых питает свою форсунку. По своему устройству единичные секции абсолютно одинаковы. Эти приборы устанавливались ранее на дизельных двигателях и работали по жесткой программе от газораспределительного механизма (ГРМ) двигателя.
- Распределительный одноплунжерный насос — работает также синхронно с вращением коленчатого вала. На 4-тактном двигателе рабочий процесс происходит за 2 оборота коленвала. Насосный вал в это время совершит 1 оборот, а рабочий плунжер подаст очередную порцию топлива на каждую форсунку. Распределительные насосы чаще всего используются в моторах легковых автомобилей.
- Магистральный ТНВД. Этот прибор работает независимо по отношению к коленчатому валу. Его задача заключается лишь в создании необходимого давления в топливной магистрали, которую называют еще топливной рампой. Последняя является своего рода гидравлическим аккумулятором. Открыванием форсунок управляет электронный блок управления (ЭБУ) при помощи электромагнитного клапана. Топливный насос высокого давления такого типа применяется в системах впрыска Common Rail.
Рядный ТНВД
Конструктивно он состоит из отдельных нагнетающих секций, выполненных в виде плунжерных пар (поршень-втулка). Сопряженные детали изготавливают из высокопрочной износостойкой хромованадиевой стали, азотированной и закаленной до высокой твердости. После шлифовки внутреннюю поверхность втулок подвергают двукратному хонингованию: сначала крупной абразивной пастой, затем — мелкой. Плунжер доводят с помощью суперфинишной обработки.
При сборке ТНВД используется селективный метод подбора плунжерных пар. Детали сортируют по группам с отклонением между собой до 2-х микрон, поэтому детали разных узлов — невзаимозаменяемые.
Нагнетание топлива плунжером происходит за счет отсечки некоторого объема горючего и последующего сжатия в напорной магистрали. Поршень перемещается роликовым толкателем от кулачкового вала насоса, получающего вращение от коленвала. За два оборота коленвала каждый плунжер совершит один рабочий ход.
Количество горючего регулируется с помощью приводной зубчатой рейки, которая имеет механический привод от педали газа, либо перемещается шаговым двигателем от сигнала ЭБУ. Для этой цели плунжерная поверхность снабжена винтовой канавкой. Рейка с помощью зубчатой передачи поворачивает в корпусе направляющие гильзы, вследствие чего изменяется угловое расположение винтовой канавки, а, следовательно, и объем топливной порции.
Начало впрыска регулируется автоматически по частоте вращения двигателя. Этой цели служит центробежный регулятор момента впрыска. Он располагается в приводной муфте (черный маховик слева на первом фото). Внутри этот узел состоит из 2-х полумуфт, упруго разделенных между собой тангенциально расположенными пружинами и грузами. При увеличении оборотов за счет центробежной силы грузов пружины сжимаются, и кулачковый вал поворачивается на некоторый угол относительно приводной муфты, тем самым создавая опережение впрыска.
ТНВД распределительного типа
Этот прибор по сравнению с рядным обладает двумя преимуществами: он меньше его по размерам и более равномерно работает. Если рядные насосы устроены все одинаково, этого нельзя сказать в отношении распределительных аппаратов.
Во-первых, они разделяются по типу рабочего органа: плунжерного типа, или роторного. Во-вторых, — по типу привода: с торцевыми, внешними, или внутренними кулачками. Торцевой или внутренний привод работает в более благоприятных условиях, в связи с тем, что внутренние силы уравновешены, чего не скажешь о внешнем приводе.
Несмотря на указанные выше достоинства, распределительные аппараты менее долговечны. Это объясняется спецификой их работы. В то время как в рядных механизмах каждый плунжер в течение одного рабочего цикла совершает одно возвратно-поступательное движение, в распределительных устройствах рабочий плунжер за это время сделает столько ходов, сколько в двигателе цилиндров. Поэтому износ будет намного быстрее.
Рассмотрим кратко устройство и принцип работы одноплунжерного торцевого распределительного прибора. Слева можно заметить ведущий вал, приводящий во вращение 3 механизма: ротор шиберного насоса подкачки, ведущий приводной кулачок и шестерню механизма регулирования подачи.
Соосно и синхронно с приводным валом вращается подвижный торцевой кулачок, жестко соединенный с рабочим плунжером. Оба кулачка (ведущий и рабочий) снабжены выступами по количеству цилиндров двигателя. Рабочий поджимается пружиной к ведущему кулачку. Когда выступы наезжают друг на друга, рабочий кулачок перемещает плунжер в направлении выходных штуцеров (на фото справа).
При этом плунжер отсекает дозу горючего из низконапорной полости, сжимает запертый объем и выталкивает его в один из выходных каналов, расположенных радиально в распределительном блоке. Поскольку плунжер вращается, будучи жестко связанным с коленчатым валом (но в 2 раза медленнее), при каждом последующем ходе нагнетающее отверстие плунжера совпадает с очередным выходом.
Лопастной насос всасывает горючее из топливного бака и подает его в камеру низкого давления. Распределительные насосы, подобно рядным, имеют механизм регулировки количества подаваемого топлива. Он может быть автоматическим (центробежным), или от ЭБУ. На фото показан как раз такой насос. Прямоугольная коробка, расположенная сверху, есть не что иное, как электронный блок управления количеством подаваемого топлива.
Область применения распределительных насосов — легковые автомобили, хотя встречаются и на грузовиках.
Магистральный ТНВД
Само название говорит об особенностях работы устройства. Этот насос обслуживает не отдельные форсунки, как рядный или распределенный, а одну общую магистраль, которая служит своего рода аккумулятором. В связи с тем, что конструкция освобождена от распределительной функции, она имеет более простое строение в сравнении с двумя предыдущими.
В качестве рабочих органов аппарат содержит от одного до трех нагнетающих плунжеров. Посредством кулачкового вала они поочередно совершают поступательные движения: по ходу нагнетания от кулачкового механизма, в обратную сторону — посредством пружины.
При этом горючее из низконапорной полости отсекается и подается к напорному штуцеру. Количественный состав смеси регулируется электромагнитным дозирующим клапаном, управляемым электроникой.
На рисунке показана схема топливного насоса магистрального типа. Чаще всего такие устройства применяются в системах Common Rail.
Бывает ли ТНВД на бензиновом двигателе?
Почему бы и не быть ТНВД у бензинового двигателя? Пуркуа па? — как говорят французы. В частности, ТНВД устанавливают на бензиновых моторах GDI — оснащенных системой прямого впрыска. Известно, что прямой впрыск используется в дизельных системах.
Так вот — работа система GDI является симбиозом дизельного и бензинового рабочего процесса. Бензин впрыскивается аналогично дизельному двигателю, а воспламенение топливно-воздушной смеси осуществляется не от калильной свечи, а от свечи зажигания, как в карбюраторном. В этом случае используются насосы распределительного типа.
Ремонт насосов высокого давления
Насос насосу рознь. Бензонасос вазовской «копейки» можно было отремонтировать в течение 15-ти минут. Отвернул 3 крепежных винта, и весь механизм — буквально на ладони. Засорившиеся клапаны легко продуваются, а если прохудилась диафрагма — достаточно купить копеечный ремкомплект и поставить его вместо неисправной детали.
Ремонт же топливных насосов высокого давления на коленке не сделаешь. Во-первых, даже причину неисправности определить не так легко, невзирая на встроенную в современных ЭБУ самодиагностику.
Один и тот же внешний симптом может вызываться неисправностью различных компонентов топливной системы, и даже других систем (например, состоянием газораспределительной системы или кривошипно-шатунной группы).
Поэтому ремонт ТНВД лучше выполнять на специализированных СТО с использованием современного диагностического и ремонтного оборудования.
В связи с широким распространением систем впрыска топливные насосы высокого давления являются одним из наиболее важных компонентов современного ДВС. Тенденция их развития заключается в переходе от секционных устройств к распределительным и магистральным. Последние особенно широко применяются в связи с появлением системы непосредственного впрыска Common Rail.
Топливная система автомобилей Toyota - Энциклопедия японских машин - на Дром
Система впрыска топлива
Система впрыска топлива предназначена для впрыска точно измеренного количества топлива в нужное время. На основе сигналов датчика входа программное устройство электронного блока управления (ЕСМ) решает, когда включать и выключать каждую форсунку.
Система подачи топлива
Система подачи топлива предназначена для бесшумной подачи топлива в необходимом объеме под правильным давлением. Система подачи топлива также должна отвечать требованиям по выхлопным газам и безопасности. Основные компоненты:
- Топливный насос.
- Топливный насос электронного управляющего блока.
- Регулятор давления.
- Схема управления давлением топлива.
- Топливные трубопроводы.
- Топливный бак.
- Топливный фильтр.
- Гаситель пульсации.
- Топливные форсунки.
- Инерционный переключатель.
Обратная система подачи топлива
Когда блок ЕСМ приводит в действие топливный насос, топливо под давлением выходит из бака, проходит через топливный фильтр к направляющей-распределителю для топлива и далее к регулятору давления. Регулятор давления поддерживает давление топлива в направляющей-распределителе на определенном уровне. Избыток топлива, не израсходованный двигателем, возвращается в бак по обратному топливному трубопроводу. Гаситель пульсации, установленный на направляющей-распределителе, используется на многих двигателях для гашения скачков давления в направляющей-распределителе. Форсунки, включаемые электронным блоком управления, подают топливо во всасывающий коллектор. Когда блок ЕСМ отключает топливный насос, обратный клапан в топливном насосе закрывается, поддерживая остаточное давление в топливной системе.
Невозвратная система подачи топлива
Когда блок ЕСМ приводит в действие топливный насос, топливо под давлением подается из насоса на регулятор давления. От регулятора давления излишек топлива направляется на дно топливного бака, топливо под давлением направляется из топливного бака через топливный фильтр, гаситель пульсации на направляющую-распределитель. Когда блок ЕСМ включает форсунки, топливо подается во всасывающий коллектор.
Давление топлива в системе поддерживается на постоянном уровне 44-50 фунтов на кв. дюйм (301-347 кПа), более высоком, чем давление в возвратной топливной системе. Программирующее устройство блока управления и более высокое давление позволяют не использовать вакуум-модулированный регулятор давления.
Невозвратная система подачи топлива была одобрена, так как она снижает испарительный выхлопы, поскольку нагретое топливо не возвращается в топливный бак. В возвратной системе подачи топлива нагретое двигателем топливо возвращается в топливный бак и содержит большее количество топливных паров.
Топливный насос
Топливный насос установлен в баке и погружен в топливо. Топливо охлаждает и смазывает насос. При прохождении тока через мотор якорь и насосное колесо вращаются. Насосное колесо направляет топливо в фильтр и выводит топливо под давлением через выпускное отверстие. Перекачивающая способность топливного насоса превышает потребности двигателя. Это значит, что насос всегда обеспечивает двигатель достаточным количеством топлива.
Выпускной обратный клапан, расположенный в выпускном отверстии, поддерживает остаточное давление топлива в топливной системе, когда двигатель выключен. Это улучшает пусковые характеристики и уменьшает паровую пробку. Без остаточного давления топлива в системе нужно было бы создавать давление каждый раз при запуске двигателя, а это увеличивало бы время запуска (проворачивания коленвала). Когда выключается горячий двигатель, температура топлива в трубопроводе вокруг двигателя возрастает. Удержание системы под давлением повышает точку кипения топлива и предотвращает испарение топлива.
Перепускной клапан давления открывается, если давление в топливной системе повышается. Это защитное устройство для предотвращения разрыва и повреждения насоса топливным трубопроводом.
Во многих моделях топливный насос является частью устройства топливного насоса. Это устройство содержит фильтры, устройство давления (только топливной системы), датчик
и топливный насос. Многие из компонентов можно приобретать отдельно.
Струйный насос
Струйный насос – это дополнительный насос, который используется, когда дно топливного бака разделено на две камеры. Избыток топлива, проходящий через обратный топливный трубопровод, попадает в трубку Вентури. Это создает участок низкого давления вокруг трубки Вентури, при этом топливо забирается из камеры В и направляется в камеру А.
Регуляторы топливного насоса
За многие годы было использовано множество различных регуляторов и схем управления топливным насосом. Основные методы:
- Контроль включения/выключения с помощью электронного блока управления
- Контроль включения/выключения с помощью выключателя топливного насоса
- Двухскоростной регулятор включения/выключения с резистором
- Двухскоростной регулятор включения/выключения с электронным блоком управления топливного насоса
- Трехскоростной регулятор включения/выключения с электронным блоком управления топливного насоса
Самый надежный способ определения типа схемы управления топливным насосом – найти схему в соответствующем руководстве EVVD.
Ниже описаны основные методы управления топливным насосом. Необходимо помнить, что топливный насос работает только во время запуска или работы двигателя.
Контроль включения/выключения с помощью электронного блока управления
Ниже объясняется, как активируется цепь топливного насоса.
Запуск двигателя
Когда двигатель запускается, ток идет от гнезда IG замка зажигания на катушку L1 главного реле системы EFI, включая реле. Одновременно ток идет от гнезда ST замка зажигания на катушку L3 реле открытия цепи, включая ее и приводя в действие насос. Теперь топливный насос подает топливо в систему впрыска топлива.
Примечание: Реле открытия цепи в данном примере подключено со стороны заземления.
Работа двигателя
После запуска двигателя и поворота ключа зажигания в положение «включено» (IG), ток на катушку L3 отключается, но электронный блок управления поддерживает топливный насос во включенном состоянии с помощью катушки L2 до тех пор, пока блок управления принимает сигнал NE. Если сигнал NE теряется в любое время после запуска, блок управления отключает топливный насос.
Остановленный двигатель
Когда двигатель останавливается, подача сигнала NE в блок управления прекращается. Это отключает транзистор и, таким образом, прерывает токопрохождение на катушку L 2 реле открытия цепи. В результате реле открытия цепи открывается, отключая топливный насос.
Примечание: Резистор R и конденсатор С в реле открытия цепи предназначены для предотвращения открывания контактов реле во время прохождения тока в катушке L2 из-за электрических шумов (топливные насосы с блоком ЕСМ) или резкого снижения объема всасываемого воздуха (топливные насосы с переключателем топливного насоса). Они также служат для предотвращения скопления искр на контактах реле. В некоторых моделях катушка L3 в реле открытия цепи не предусмотрена.
Контроль включения/выключения с помощью выключателя топливного насоса
Переключатель топливного насоса используется в старых транспортных средствах с крыльчатым расходомером воздуха. Когда двигатель работает, воздух передвигает крыльчатку, закрывая переключатель топливного насоса. Ниже объясняется принцип работы цепи.
Когда двигатель запускается, ток идет от гнезда IG замка зажигания на катушку L1 главного реле системы EFI, включая реле. Одновременно ток идет от гнезда ST замка зажигания на катушку L3 реле открытия цепи, включая ее и приводя в действие насос. После запуска двигателя цилиндры начинают забирать воздух, при этом открывается измерительная пластинка внутри расходомера воздуха. Это включает выключатель топливного насоса, подсоединенный к измерительной пластинке, и ток проходит на катушку L2 реле открытия цепи.
Работа двигателя
После запуска двигателя и переключения зажигания с сигнала ST назад на сигнал IG прохождение тока на катушку L3 реле размыкания цепи прекращается. Однако, ток продолжает поступать на катушку L2 во время работы двигателя, поскольку включается переключатель топливного насоса внутри расходомера воздуха. В результате реле размыкания цепи остается в рабочем положении, обеспечивая бесперебойную работу топливного насоса.
Остановка двигателя
Когда двигатель останавливается, измерительная пластина полностью закрывается, и переключатель топливного насоса отключается. Это останавливает прохождение тока на катушку L2 реле размыкания цепи. В результате реле размыкания цепи остается в нерабочем положении, и топливный насос прекращает работу.
Двухскоростное управление топливным насосом
Двигатели с большим рабочим объемом требуют большего объема топлива во время запуска и работе при больших нагрузках, чем двигатели с небольшим рабочим объемом. Для удовлетворения этой потребности используются топливные насосы высоко мощности, однако они производят больше шума и потребляют больше энергии. Для преодоления этих недостатков и увеличения срока службы насоса используется двухскоростной регулятор топливного насоса.
Двухскоростной регулятор включения/выключения с резистором
В этом устройстве используется реле с двойным контактом и добавочный ограничительный резистор.
Двухскоростной регулятор включение/выключения с блоком ECU топливного насоса
Данный тип схож с другими системами но использует блок ECU топливного насоса. Однако, в этой системе регулятор включения и выключения и регулятор скорости топливного насоса контролируются блоком ECU топливного насоса на основании сигналов блока ECM. Кроме того, блок ECU топливного насоса оснащен функцией диагностики системы топливного насоса. При обнаружении неполадок клемма D1 посылает сигналы на блок ЕСМ.
Высокая скорость
Во время запуска или работы при большой нагрузке блок ECM посылает сигнал HI (около 5 вольт) на клемму FPC блока ECU топливного насоса. Затем блок ECU топливного насоса подает полную мощность аккумулятора на топливный насос.
Низкая скорость
После запуска двигателя во время работы на холостых оборотах или при малых нагрузках блок ЕСМ посылает низкий сигнал (около 2,.5 вольт) на блок ECU топливного насоса. Затем блок ECU топливного насоса подает меньшее напряжение (около 9 вольт) аккумулятора на топливный насос.
Трехскоростной регулятор топливного насоса
В данной системе топливный насос контролируется в три этапа (высокая скорость, средняя скорость и низкая скорость).
Высокая скорость
Когда двигатель работает при больших нагрузках на высоких оборотах или запускается, блок ЕСМ посылает сигнал 5 вольт на блок ECU топливного насоса. Затем блок ECU насоса подает на топливный насос мощность, заставляя топливный насос работать на высокой скорости.
Средняя скорость
При высоких нагрузках на низкой скорости блок ЕСМ посылает на регулятор топливного насоса сигнал в 2,5 вольт. Блок ECU подает на топливный насос примерно 10 вольт. Это считается средней скоростью.
Низкая скорость
На холостых оборотах или при малых нагрузках блок ECМ посылает на блок ECU топливного насоса сигнал в 1,3 вольт. Блок ECU подает на топливный насос 8,.5 вольт, предотвращая излишний шум и снижая расход мощности.
Инерционный переключатель
Инерционный переключатель топливного насоса отключает топливный насос, когда автомобиль попадает в аварию, сводя к минимуму утечку топлива.
Работа
Инерционный переключатель состоит из шара, тяги с пружиной, точки контакта и переключателя сброса. Если сила столкновения превышает установленную величину, шар приходит в движение, тяга с пружиной падает, открывая точку контакта. Это размыкает цепь между блоком ЕСМ и блоком ECU топливного насоса, и топливный насос отключается. Если инерционный переключатель топливного насоса отключен, его можно переустановить, нажимая на переключатель сброса не менее 1 секунды.
Регуляторы давления
Регулятор давления должен непрерывно и точно поддерживать правильный уровень давления топлива. Это важно, поскольку блок ЕСМ не измеряет давление в топливной системе. Он предполагает, что давление верно. Существует два основных типа регуляторов давления.
Модулированные регуляторы давления
В возвратной системе подачи топлива используется регулятор давления, расположенный между топливной направляющей и возвратным трубопроводом топливного бака. Существует два типа регуляторов давления. Один тип модулирован вакуумом, другой – атмосферным давлением.
Вакуум-модулированный регулятор давления
Для обеспечения точного измерения топлива вакуум-модулированный регулятор давления поддерживает постоянную разницу в давлении в топливной форсунке. Это означает, что давление в топливной направляющей всегда поддерживается на постоянном уровне выше абсолютного давления в коллекторе.
Низкое давление во всасывающем коллекторе (например, на холостых оборотах) оттягивает мембрану, снижая давление пружины. При этом больший объем топлива возвращается в топливный бак, и давление в топливной направляющей снижается. Открытие дросселя повышает давление в коллекторе. При меньшем вакууме давление пружины мембраны повышается, ограничивая отток в топливный бак. Это повышает давление в топливной направляющей.
Невозвратная система подачи топлива с регулятором постоянного давления
В невозвратной системе подачи топлива используется регулятор постоянного давления, расположенный в топливном баке над топливным насосом. Этот тип регулятора поддерживает постоянное давление топлива вне зависимости от давление во всасывающем коллекторе. Топливное давление определяется пружиной, установленной внутри регулятора. Топливо из топливного насоса преодолевает давление пружины, и некоторое количество топлива перепускается в топливный бак. Давление тполива не регулируется.
Компоненты системы подачи топлива. Топливный трубопровод и соединители
В современных автомобилях используются разнообразные материалы и соединители для топливных трубопроводов. Сталь и синтетические материалы применяются в зависимости от расположения и года выпуска модели. При обслуживании топливных трубопроводов необходимо соблюдать правильные процедуры.
Соединители бывают резьбовые и быстрого соединения.
Топливный бак предназначен для безопасного хранения топлива и паров топлива. В основном он содержит устройство топливного насоса и клапаны защиты от переворачивания.
Топливные фильтры
Обычно в системе подачи топлива используются два топливных фильтра. Первый фильтр – это фильтр топливного насоса, расположенный со стороны всасывания топливного насоса. Этот фильтр предотвращает повреждение топливного насоса загрязнениями. Второй фильтр, расположенный между насосом и топливной направляющей, удаляет пыль и загрязнения из топлива до его подачи в форсунки. Этот фильтр удаляет из топлива мельчайшие частицы, поскольку форсункам требуется абсолютно чистое топливо.
Фильтр может быть расположен в топливном баке и являться частью устройства топливного насоса или за пределами бака в топливном трубопроводе, идущем к топливной направляющей. Фильтр сконструирован таким образом, что не нуждается в техническом обслуживании и замене.
Засоренный топливный фильтр препятствует попаданию топлива в форсунки. Поэтому при высоких нагрузках двигатель может плохо запускаться, переполняться топливом или терять мощность. При полностью забитом фильтре двигатель не будет запускаться.
Демпфер пульсации
Быстрое открывание и закрывание топливных форсунок вызывает скачки давления в топливной направляющей. В результате количество впрыскиваемого топлива оказывается больше или меньше необходимого. Демпфер пульсаций, установленный на топливной направляющей, гасить эти перепады давления. Когда давление внезапно начинает подниматься, мембрана с пружиной слегка отодвигается назад, увеличивая объем топливной направляющей. Давление топлива моментально сбрасывается со слишком высокого уровня. Когда давление внезапно начинает падать, мембрана с пружиной расширяется, слегка сокращая рабочий объем топливной направляющей. Давление топлива моментально поднимается со слишком низкого уровня. Не всем двигателям требуется использование демпфера пульсации.
Винт, установленный в верхней части демпфера, облегчает проверку давления в топливной системе. Когда винт поднят, это означает, что топливная направляющая по давлением. В большинстве случаев проверка таким способом адекватна. Винт не полежит регулировке и используется для калибровки демпфера на заводе-изготовителе.
Процесс впрыска топлива
Топливная форсунка, включенная блоком ЕСМ, распыляет и направляет топливо во всасывающий коллектор.
Топливные форсунки
На каждом цилиндре во всасывающем коллекторе перед впускным клапаном(и) установлено по одной форсунке. Форсунки устанавливаются с изолятором/прокладкой на конце коллектора для защиты форсунки от нагрева и предотвращения попадания атмосферного давления в коллектор. Форсунка защищена трубопроводом подачи топлива. Уплотнительное кольцо между подающим трубопроводом и форсункой предотвращает утечку топлива.
Различным двигателям требуются различные форсунки. Форсунки в открытом виде предназначены для пропускания определенного количества топлива. Кроме того, количество отверстий в наконечнике форсунки изменяется в зависимости от типа двигателя и года выпуска модели. При замене форсунки необходимо использовать форсунку правильного типа.
Внутри форсунки расположен соленоид и игольчатый клапан. Цепь топливной форсунки подключена к заземлению. Для включения форсунки блок ЕСМ включает транзистор, замыкая контакт на заземление. Магнитное поле толкает игольчатый клапан вверх, преодолевая давление пружины, и топливо выходит из форсунки. Когда блок ЕСМ отключает цепь, давление пружины выталкивает игольчатый клапан на месте, прерывая поток топлива.
Как работает тнвд бензинового двигателя тойота виста
Впрыск топлива непосредственно в цилиндры и во впускной канал
- Поскольку система D-4 способна впрыскивать топливо непосредственно в цилиндры, процесс сгорания ТВС может быть трех видов.
- В данном разделе описывается система D-4 со стехиометрическим процессом сгорания, которая не поддерживает стратифицированный процесс сгорания.
- Топливо впрыскивается непосредственно в цилиндр во второй половине хода сжатия, благодаря чему в зоне свечи образуется воспламеняемый слой при одновременном впуске воздуха.
- Воспламеняемый слой, состав которого максимально приближен к стехиометрическому уровню, окружен слоем воздуха. В результате общий состав получается обедненным, что, однако, не ухудшает воспламенение смеси.
- По сравнению с однородным сгоранием в процессе стратифицированного сгорания сокращаются насосные потери. Испарение впрыскиваемого топлива способствует охлаждению сжатого воздуха и повышает коэффициент наполняемости.
- В процессе стратифицированного сгорания существенно повышается содержание кислорода в отработавших газах, поэтому обычный трехкомпонентный нейтрализатор не способен очищать газы от оксидов азота (Nox). Поэтому он заменен специальным каталитическим нейтрализатором, который хранит оксиды азота, образованные на этапе стратифицированного сгорания, и сокращает их количество перед очищением на этапе однородного сгорания.
- В это же самое время для снижения температуры процесса сгорания подается большое количество рециркулируемых газов, что способствует снижению образования оксидов азота (Nox).
- При слабом стратифицированном сгорании топливо впрыскивается в два этапа: в начале такта впуска и в конце такта сжатия.
- Процесс слабого стратифицированного сгорания в системе D-4 со стратифицированным сгоранием служит своего рода мостом между стратифицированным и однородным сгоранием, а в системе D-4 со стехиометрическим сгоранием средством улучшения прогрева каталитического нейтрализатора сразу же после запуска холодного двигателя (благодаря высокой температуре процесса сгорания).
- В процессе однородного сгорания топливо впрыскивается в такте впуска, благодаря чему достигается образование однородной топливовоздушной смеси в также сжатия.
- В одном из двух прямых каналов установлен клапан завихрения воздуха (SCV), который призван улучшить коэффициент наполняемости и производительность процесса сгорания.
- При низкой частоте вращения клапан SCV полностью закрыт, и воздух поступает только по одному каналу. Такой подход улучшает перемешивание воздуха и топлива, а также ускоряет прохождение воздуха, что повышает коэффициент наполняемости.
- При высокой частоте вращения клапан SCV открывается для повышения расхода воздуха, что также повышает коэффициент наполняемости.
- В следующих таблицах представлен краткий обзор основных операций управления, которые осуществляются при различных типах сгорания.
- Установленный на крышке головки блока цилиндров топливный насос высокого давления приводится в действие кулачком распределительного вала впускных клапанов.
- Управление насосом осуществляется ЭБУ двигателя и ЭБП форсунок (блок EDU). Они управляют электромагнитным клапаном в зависимости от режима работы двигателя, чтобы сбросить необходимое количество топлива для доведения фактического давления в топливной системе до заданного уровня.
- За счет подъема или опускания топливо подается, а давление в системе повышается.
- За счет закрытия электромагнитного клапана, расположенного на впуске топливного насоса, необходимое количество топлива возвращается в топливный бак. Клапан задействуется в оптимально подобранный момент в такте сжатия.
- При раннем закрытии электромагнитного клапана увеличивается эффективный ход плунжера, в результате чего сбрасывается большее количество топлива.
- Клапан установлен на топливной рампе. Он открывается для уменьшения давления топлива, когда давление в топливной системе поднимается выше определенного
уровня.
- Давление в топливной системе поддерживается в диапазоне 8 — 13 МПа/1160,3 — 1885.5 фунт/кв. дюйм. Обычно перепускной клапан закрыт и открывается, только когда давление поднимается выше определенного уровня.
- Впрыскивает топливо под высоким давлением в течение короткого промежутка времени для образования в цилиндре оптимального состава ТВС. Форсунка приводится в действие с помощью системы, в которой используется высоковольтный конденсатор, поддерживающий высокое напряжение и постоянный ток.
- Данный блок предназначен для высокоточного управления форсунками для непосредственного впрыска топлива в цилиндры при высокой частоте вращения.
- Поступаемый от ЭБУ двигателя сигнал впрыска преобразуется в сигнал высокого напряжения и большой силы тока. При подаче сигнала форсунка впрыскивает топливо в цилиндр, при отсутствии — закрывается
- EDU — это собирательное название цепь управления.
- Если исполнительному механизму для задействования необходимо высокое напряжение или большая сила тока, цепь привода отделяется от цепи управления и, благодаря блоку EDU, противодействует образованию тепла, шума и энергопотерям.
- ЭБУ двигателя посылает сигнал запроса на впрыск
через цепь формирования сигнала в выключатель
высокого напряжения (через одновибратор) и в цепь управления.
- Выключатель подает высокое напряжение, усиливаемое преобразователем постоянного
тока, на клемму COM-1 в соответствии с сигналом
запроса на впрыск.
- Соединяя клемму INJ1 с массой, цепь управления регулирует продолжительность впрыска топлива и
угол опережения зажигания.
- После того как сила тока возрастает примерно до 8 А, значение стабилизируется в рамках 1,9 — 2,6 A.
- При соблюдении следующих условий ЭБП форсунок посылает в ЭБУ двигателя сигнал подтверждения INJF.
- Данный датчик закреплен на топливной рампе и измеряет в ней давление.
4. Способ управления
5. Сопутствующие параметры
[1] Таблица данных
[2] Режим активной диагностики
Переключение между режимами сгорания и таблица данных (система D-4 со стратифицированным сгоранием: 1AZ-FSE)
6. Особые случаи использования диагностического прибора
- Если форсунка для впрыска топлива непосредственно в цилиндр распыляет топливо несоответствующим образом, происходит пропуск зажигания или другая подобная неисправность. То же самое может происходить, если поток воздуха в цилиндр ограничен из-за образования нагара в системе впуска, например, во впускном коллекторе.
- С помощью функции Control the Injection Timing можно проверить вероятность пропуска зажигания в отдельных цилиндрах (стойкость к пропуску зажигания).
Данная проверка основывается на том, что момент впрыска изменяется в зависимости от
несоответствующего распыления топлива, а вероятность пропуска зажигания увеличивается по сравнению с исправным двигателем.
- Если для автомобиля предусмотрено отображение параметра скважности сигнала привода топливного насоса высокого давления, можно проверить исправность насоса. Для этого необходимо сравнить скважность сигнала, необходимого для поддержания заданного давления в топливной системе, на исправном и неисправном автомобилях.
- Если системы впрыска топлива под высоким давлением исправна, давление поддерживается на постоянном уровне.
- Однако если в системе имеется утечка или неисправность, при выключении двигателя давление в топливной системе резко падает.
- При появлении неисправности следует проверить давление в топливной системе следующим образом.
Читайте также: