Как работает двигатель ваз
MihailPolkovnik › Блог › Как устроен двигатель ВАЗ 1,8
Дорогие друзья, всем доброго вечера! Буквально полчаса назад я наткнулся на весьма любопытную статью под названием "Как устроен двигатель ВАЗ 1,8: английские технологии и русское упорство" онлайн-журнала "Колеса.ру" и решил показать её Вам. Думаю для многих поклонников ВАЗовской продукции и просто людям, интересующимся нашим автопромом, она будет весьма интересна:
На первый взгляд, в новом ВАЗовском моторе нет ничего интересного. 1,8 литра рабочего объема, 122 лошадиные силы – кого этим сейчас впечатлишь? Вот кабы было раза в два больше, тогда «автоэксперты нашего двора» были бы довольны. Ведь любой гаражный тюнер скажет вам, что с ВАЗовского мотора снять 122 силы – «вообще не проблема». Залил новую прошивку, расточил блок, поставил кованые поршни… И почему АВТОВАЗ столько лет вынашивал этот продукт?
Оригинал можете почитать по ссылочке.
А дело все в том, что гаражный тюнинг отличается от серийного производства так же серьезно, как дрэг-заезд на старых «Жигулях» от этапа Формулы-1. Увеличение отдачи мотора в заводских условиях – это действительно очень долго и сложно. Настолько сложно, что если вы представите себе самую непростую на свете задачу, то это будет еще в 10 раз сложнее.
Мы беседовали с руководителем проекта Владимиром Евграфовичем Золотухиным и начальником отдела испытания силового агрегата Евгением Петровичем Байбориным, и весь их рассказ мы разделили на несколько тематических блоков.
В следующий раз тема возникла в 2008 году и уже с совершенно новым видением – мотор планировалось создать с «привязкой» к действующему производству двигателей, ибо было понятно, что абсолютно новую конструкцию заводу не потянуть. Был проведён ряд консультаций с иностранными компаниями, занимающимися разработкой систем регулирования фаз газораспределения VVT, и в итоге в октябре 2008 года появился контракт с британской фирмой Ricardo.
В августе следующего 2009 года в Тольятти собрали первые моторы и отправили англичанам на испытания. В конце 2009 года были подтверждены все проектные показатели и начался процесс доводки. История у двигателя получилась непростая – много раз проект в силу тех или иных причин останавливался и запускался вновь. Но в феврале 2016 года стартовало его серийное производство.
Технические характеристики и общее направление разработки
Двигатель был спроектирован так, чтобы его можно было с минимальными затратами запустить в действующем производстве. В силу этого за «базу» нужно было принять какой-то из уже существующих моторов. Такой базой для двигателя ВАЗ-21179 стал 1,6-литровый ВАЗ-21127 (или, в варианте для Vesta и Xray, ВАЗ-21129). Встречающееся далее в рассказе словосочетание «базовый двигатель» следует трактовать именно таким образом.
Мощность двигателя ВАЗ-21179 составляет 122 л. с./90 кВт (у базового двигателя –106 л. с./78 кВт), а максимальный крутящий момент – 170 Нм (у базового двигателя – 148 Нм). Особенно важно то, что «левая ветвь» внешней скоростной характеристики (ВСХ) этого мотора (то есть зона низких оборотов) получилась «приподнятой». То есть уже с 1 000 об/мин водителю доступен момент 127 Нм – значение, до которого первые ВАЗовские моторы не дотягивались даже «в пике». Итак, мотор получился «моментным», то есть обеспечивающим хорошую приёмистость, а значит, и позитивные эмоции на разгоне.
В действительности потребителю нужно, чтобы двигатель был мощным, но при этом расходовал мало топлива и был недорогим. Это, как мы понимаем, во многом противоречивые требования. Дать мощность – один набор решений. Чтобы при этом остался приемлемым расход топлива – второй набор. А чтобы двигатель по стоимости не ушёл в премиальный сегмент – третий набор. Всё это компромиссы, и зачастую нелёгкие.
На АВТОВАЗе долгое время отдавали приоритет расходу топлива, а энерговооружённость по сравнению с иномарками была скромной. ВАЗовские конструкторы-двигателисты долгое время «бежали впереди производства», т.к. мечтали о двигателе большего объёма, дающим удовольствие от вождения. Но нужно было, чтобы ситуация созрела – с точек зрения рынка, экономики и техники.
Так как же повысить энерговооружённость атмосферного мотора? Нет-нет, мы сейчас не о чип-тюнинге – оставим его гаражным умельцам. Один из наиболее распространённых приёмов, применяемых в тюнинге двигателей – увеличение рабочего объёма за счёт хода поршня. Ранее на ВАЗе уже использовали этот приём, пошли этим путём и в этот раз – на замену коленвалу, обеспечивающему ход поршня в 75,6 мм, был разработан тот, что давал 84 мм. Казалось бы, простейший приём, чисто геометрический элемент форсирования, заключающийся в том, чтобы позволить двигателю потреблять больше воздуха.
Но реальность не укладывается в чистую геометрию – потреблению воздуха сопротивляются газовые каналы, клапаны, их сопряжения с сёдлами… Чтобы двигатель мог эффективно засасывать в себя возросшие объёмы воздуха, и понадобились услуги Ricardo, владеющей мощными программными средствами расчёта характеристик двигателя в динамике.
В результате их расчётов двигатель хоть и остался похож на базовый, поменялся значительно – из-за нового модуля впуска, иных газовых каналов, увеличенного диаметра клапанов… Но ведь и на этом дело не кончается – после того, как мотор всосал рабочую смесь, её нужно максимально полно сжечь. Для достижения этой цели в Ricardo применили комбинацию горизонтальных и вертикальных вихрей в цилиндрах.
А ведь ещё нужно обеспечить хорошую детонационную стойкость мотора, чтобы его не пришлось кормить высокооктановым Аи-98! В первую очередь эта стойкость зависит от формы камеры сгорания и расположения свечи, и у базового мотора эти параметры были близки к оптимальным.
Второй важный момент при борьбе с детонацией – температурный режим. Для его оптимизации были внесены изменения в охлаждение блока цилиндров, а главное – радикально переработана рубашка охлаждения головки блока. Интересный факт: у появившихся в 1996 году 16-клапанных моторов ВАЗ расход жидкости через новую головку блока был в 2,5 раза меньше, чем через прежнюю восьмиклапанную. Всё логично: больше деталей, клапанов, каналов – всё это «съело» внутреннее пространство и затруднило приток жидкости через головку. При проектировании мотора 1,8 литра внимательно работали над обеспечением хорошего притока жидкости через головку, над охлаждением стенок цилиндров и в целом над улучшением антидетонационных свойств.
Тем самым удалось реализовать большие углы опережения зажигания, а значит и заложить основу экономичности нового двигателя. Ключевой показатель для двигателистов во всём мире – удельный расход при среднем эффективном давлении Pe = 0,2 МПа. Этот показатель является характерным, он позволяет сравнивать расход топлива в городском режиме проектируемого двигателя с другими агрегатами. Так вот, у базового двигателя этот показатель был равен 404 г/(кВт·ч), а у нового получился на уровне 370 г/(кВт·ч).
И ещё один немаловажный момент – снижение механических потерь. Это целый комплекс мер – в частности, у нового коленвала более тонкие шатунные шейки. К мехпотерям относят также и потери на газообмен, и поэтому в новом двигателе выпускные каналы катколлектора имеют диаметр 39 мм (у базового – 36 мм), и в итоге, с учётом модернизации впуска, газовых каналов и клапанов, новый мотор легче «вдыхает» и «выдыхает».
Блок цилиндров, коленвал, прокладка головки блока
На первый взгляд, блок остался таким же, как у базового мотора. Действительно, очень похож – и чисто внешне, и по ключевым решениям: межцентровое расстояние по-прежнему составляет 89 мм, параметры хонингования цилиндров тоже оказались неизменными.
Но отличия есть. Во-первых, появился дополнительный маслоканал между первым и вторым цилиндрами (такой же, как между вторым и третьим), связанный с основным масляным каналом, проходящим параллельно продольной оси блока в средней его части.
В-третьих, постели коренных подшипников теперь разбиты на три размерных класса. Соответственное разбиение на классы получил и коленвал – по коренным и по шатунным шейкам. Вкладыши – и коренные, и шатунные – также разбиты на три класса. На переднем торце блока теперь отмечается класс коренных опор.
В свою очередь на торец коленвала наносится информация о классах коренных и шатунных шеек. При этом в производстве реализована автоматическая селективная сборка: следящее устройство считывает размерные классы с блока и коленвала и даёт сигнал сборщику о том, какой именно взять вкладыш.
В-четвёртых, была предусмотрена возможность установки двигателя на полноприводные автомобили: традиционное место нанесения номера двигателя на заднем торце блока не подходило (номер при установке на автомобили 4х4 не читался бы), и поэтому номер «переехал» на оригинальную площадку на левой стороне блока.
И в-пятых, блок адаптирован под семейства Xray и Vesta, последняя уже этой весной может получить мотор 1,8, а также под Largus, над ним уже начали трудиться ВАЗовские инженеры: добавлены точки крепления чугунного кронштейна правой опоры двигателя на переднем торце блока – там появились три резьбовых отверстия М10; это нововведение пришло с платформы B0.
Коленчатый вал серьёзно переработан. Помимо нового, увеличенного под рабочий ход 84 мм колена, вал получил уменьшенные в диаметре шатунные шейки (коренные остались без изменений): 43 мм вместо 47,8 мм у базового мотора. Меньше диаметр – меньше длина окружности – меньше потерь на трение. Кроме того, в новом коленвале нет масляных каналов, перекрывающихся заглушками, т.к. такие каналы могут быть потенциальным местом накопления стружки. Вместо этого применены диагональные сверления, называемые «из шейки в шейку» – они менее трудоёмки в изготовлении, а технологическая продувка их легче.
Разумеется, в новом двигателе применена металлическая прокладка головки блока – такая прокладка позволяет гораздо меньше деформировать стенки цилиндра при сборке двигателя. У так называемых «мягких» прокладок всегда есть довольно высокая окантовка цилиндров – это как раз то «колено», через которое вы, затягивая болты крепления, гнёте стенку цилиндра. В результате поршневые кольца идут по «кривому» цилиндру – возникает большое сопротивление, растёт расход масла, появляется большое количество картерных газов, увеличивается токсичность. У семейства двигателей ВАЗ-2101 (потомок этих агрегатов всё ещё ставится на автомобили Lada 4x4) максимальная деформация цилиндров составляла до 90 микрон, у двигателей ВАЗ-2108 и ВАЗ-2112 – до 55 микрон.
С переходом на твёрдые прокладки, у которых «колено» значительно меньше (а значит меньше и изгибающий момент, действующий на стенку), деформация цилиндров в сегодняшних ВАЗовских двигателях упала до 25 микрон, что является хорошим современным показателем. Металлическая прокладка нового двигателя отличается от прежней – она «доводилась» по проходным отверстиям, чтобы оптимизировать движение охлаждающей жидкости.
Головка блока цилиндров
Головка блока мотора ВАЗ-21179 также весьма похожа на головку базового 16-клапанника, но отличия есть и здесь – и они, пожалуй, ещё более значительные, чем изменения по блоку. В первую очередь, появилась дополнительная система масляных каналов для управления фазовращателем – к нему мы еще вернемся позже.
В прежних моторах точка подвода масла к головке расположена между третьим и четвертым цилиндрами, но в новом моторе пришлось ввести ещё одну точку – между первым и вторым цилиндрами. Этот канал идёт вверх, переходит в продольный канал, потом в поперечный (относительно головки), и подаёт масло к управляющему клапану фазовращателя. Этот управляющий клапан – по сути соленоид, который регулирует подачу масла в камеры фазовращателя. Переднюю шейку распредвала и её опору пришлось увеличить в размерах, потому что на ней и находится фазовращатель, о котором речь пойдёт чуть позже.
Система смазки долго доводилась до ума. В расширенной передней опоре впускного распредвала появились два канала подачи масла и один канал слива. С помощью электроклапана эти три канала в определённом сочетании соединяются с двумя камерами фазовращателя, заставляя последний поворачиваться. Для исключения течи масла через сальники распредвалов в нижней части передних опор выполнено по два сливных отверстия.
У головки блока совершенно новая «водяная рубашка», которая оптимизирована с точки зрения охлаждения. Если взять песчаный стержень, который при изготовлении головки нового мотора оформляет «водяную рубашку», и сравнить его со стержнем базового 16-клапанника, можно увидеть, что ранее стержень был очень «ажурным»: мало песка, а значит впоследствии мало и охлаждающей жидкости. Новый стержень гораздо более массивный, проходные сечения для охлаждающей жидкости больше.
Изменилась и идеология прохода охлаждающей жидкости через головку: здесь масса нюансов, связанных с необходимостью охлаждения участков вокруг свечей, выпускных каналов, сёдел выпускных клапанов. В итоге терморежим в новой головке оптимизирован: температуры снизились и подровнялись от цилиндра к цилиндру.
Кроме того, в головке совершенно новые газовые каналы. Они проработаны с точки зрения наполнения двигателя смесью и образования вихревого движения заряда в цилиндре. Рассматривались как горизонтальное (на английском этот термин обозначается словом «swirl»), так и вертикальное («tumble») вихреобразование – требовалось получить должную экономичность двигателя. В результате поток смеси в цилиндре получился смешанным – в зависимости от режима работы он может быть и горизонтальным, и вертикальным.
Фазовращатель
Система VVT (Variable Valve Timing), фазовращатель или «фазер», в мире используется как минимум четверть века, но АВТОВАЗ, производитель бюджетной продукции, подошёл к этой технологии только сейчас.
Вообще, тема управления фазами газораспределения для АВТОВАЗа отнюдь не новая – как мы отметили ранее, собственные наработки двигателистов Волжского автозавода (как и инженеров завода в целом) зачастую сильно опережали возможности производства – и исторический экскурс в этом интереснейшем вопросе мы совершим в самое ближайшее время. Однако по нынешнему мотору, ВАЗ-21179, ВАЗовцы вырабатывали решения совместно с партнёрами из Ricardo.
В частности, рассматривался вариант применения «фазеров» и на впускном, и на выпускном распределительных валах, но в итоге по экономическим соображениям оставили только один, на впуске, ибо именно он даёт ощутимую прибавку в мощности и моменте, а также позволяет снизить токсичность.
После введения «фазера» в конструкцию при калибровке системы управления двигателем стали делать акцент на получении максимального крутящего момента – и только после этого калибровать токсичность, тем более что она, регламентируемая законодательно, обеспечивается в основном катколлектором.
Как же работает фазовращатель? Он позволяет распредвалу вращаться не в «жёсткой привязке» к движению ремня ГРМ, а в каждый момент времени опережая это движение или наоборот отставая от него. В результате «фазер», создавая опережение или запаздывание, изменяет фазы открытия и закрытия клапанов и постоянно адаптирует работу цилиндров к внешним условиям.
Фактически «фазер» – это гидромотор, у которого есть ротор (наружная часть) и статор. На статоре имеются лопасти, на роторе – соответствующие камеры (левая и правая, «А» и «Б»), и каждое отверстие в головке под «фазером» отводит или посылает масло в одну из камер. Переключением масляных потоков ведает управляющий соленоид, у которого есть несколько положений. Он работает постоянно и связан с контроллером двигателя. Алгоритм работы соленоида отстроен так, чтобы «фазер» отвечал на любые режимы работы двигателя каким-то конкретным своим положением.
«Фазер» крепится на передней шейке впускного распредвала с помощью болта, место крепления закрывается резьбовой заглушкой с резиновым уплотнением. Сальник впускного распредвала на передней шейке увеличен по сравнению с базовым двигателем. Производит фазовращатели для двигателя ВАЗ-21179 именитая германская фирма INA.
Экология
На старте производства экологический класс нового мотора – Евро 5. Однако уже сейчас ведутся активные работы над комплектацией Евро 6, и ничего не мешает появиться первым таким двигателям в самом ближайшем будущем, ведь стандарт Евро 6 уже опробован на LADA 4х4, поставляемых за рубеж.
Что дальше?
Во второй части рассказа о новом ВАЗовском моторе мы затронем изменения в газораспределительном механизме, шатунно-поршневой группе и некоторых других узлах, а также поговорим о поставщиках комплектующих, возможностях форсировки и тех моделях Lada, которые могут получить этот новый мотор.
Еще раз напоминаю, что оригинал можете почитать по этой ссылке.
Ставьте лайки, делитесь этой записью с друзьями и пишите в комментарии, что Вы думаете о новой ВАЗовской разработке, а также подписывайтесь на мой личный блог и на мои машинки:
Багира
Семён Семёныч
Инжекторный двигатель ВАЗ
Переход от карбюраторной системы впрыска к инжекторной позволил увеличить мощность мотора, снизить расход топлива и повысить ресурс двигателя. Такие изменения происходят из-за более точного дозирования топлива на каждом режиме работы мотора и лучшего распыления горючего, в результате чего качество топливовоздушной смеси повышается.
Как устроен инжектор автомобилей ВАЗ
На все модели, от устаревшей ныне классики, до современных Ларгуса и Калины, устанавливают инжекторную систему, скомпонованную по одному принципу.
- Информацию, которая необходима для дозирования топлива, впрыска горючего в цилиндры и создания искры зажигания поставляют датчики:
- массового расхода воздуха (ДМРВ);
- положения дроссельной заслонки (ДПДЗ);
- холостого хода (ДХХ);
- температуры охлаждающей жидкости (ДТОЖ);
- положения коленчатого вала (ДПКВ);
- детонации (ДД);
- кислорода (ДК).
- Анализ информации и управление исполнительными устройствами осуществляет контроллер инжектора.
- К исполнительным устройствам относят:
- топливные форсунки;
- систему зажигания.
Контроллер собирает информацию со всех датчиков и определяет алгоритм работы двигателя. Используя встроенную программу (прошивку), он определяет, сколько топлива нужно для каждого цилиндра, чтобы мотор работал в оптимальном режиме. В соответствии с показаниями (ДПКВ) контроллер определяет время впрыска в каждый цилиндр, а также время образования искры. С помощью (ДК) и (ДД) контроллер определяет, насколько полно сгорает топливовоздушная смесь и при необходимости корректирует количество топлива и угол опережения зажигания (УОЗ). На автомобилях с установленными бортовым компьютером (БК) устанавливают датчик расхода топлива (ДРТ) и электронный спидометр. С помощью информации с этих устройств БК определяет количество горючего, которое двигатель использовал за единицу времени (минута, час, сутки) или какое-то (обычно 100 км) расстояние.
Неисправности инжектора ВАЗ
Инжекторный двигатель представляет собой сложную сбалансированную систему, в которой неисправность одного из блоков всегда влияет на общую работу системы. Современные инжекторные системы оснащены средствами самодиагностики, поэтому существует правило – если инжектор работает нормально, мощность и расход топлива соответствуют стандарту и не горит индикатор «Check Engine», не нужно диагностировать или настраивать его. Любое вмешательство в работу инжектора только ухудшит функционирование системы.
Видео - Почему не заводится инжекторный автомобиль
Снижение мощности двигателя
Если вы обнаружили, что ваша машина вдруг стала слабей тянуть или медленней разгоняется, проверку начинайте не с инжектора. В первую очередь проверьте состояние воздушного и топливного фильтров, затем определите давление колес, после чего измерьте компрессию мотора и с помощью стробоскопа проверьте УОЗ. Внимательно осмотрите шланг, который идет от впускного коллектора к вакуумному усилителю тормозов. Возможно, плохо затянут один из хомутов или происходит подсос воздуха в месте контакта с усилителем. Снимите шланг с впускного коллектора и заглушите входное отверстие резиновой или целлофановой заглушкой. Заведите двигатель, если холостые обороты увеличились хотя бы 2 – 3 процента, проблема в подсосе воздуха через шланг, неисправный штуцер или поврежденную мембрану вакуумного усилителя.
В последнюю очередь сравните метки на шкиве коленвала и шестерне (шестернях) распределительного вала (валов). При обнаружении любой неисправности устраните ее, в большинстве случаев это позволит решить проблему. Если же все параметры в норме, необходима диагностика инжектора. Для нее желательно использовать соответствующий сканер, который покажет, в каком из устройств или систем неисправность. Если сканера нет, можно обойтись без него.
Поставьте машину на нейтральную передачу и попросите помощника несколько раз резко и до упора нажать на педаль газа. Серый, сизый или черный дым из выхлопной трубы при нажатой до упора педали газа говорит о возможной неисправности ДПДЗ, ДПКВ, ДМРВ, ДД или ДК. Постоянный черный, серый или сизый дым, густота которого увеличивается при нажатой до упора педали газа, говорит о серьезном засорении или повреждении форсунок.
Резкое увеличение расхода топлива
Если расход топлива вырос больше, чем на 40 процентов, но мощность двигателя не снизилась или упала незначительно, проверьте исправность ДМРВ. При обрыве датчика или повреждении датчика контроллер считает, что цилиндры максимально наполнены воздухом, и подает наибольшее количество топлива. Такой режим позволяет сохранить поршни, кольца и головку блока цилиндров от повреждения, вызванного работой на излишне переобедненной смеси. Ведь скорость горения топливовоздушной смеси, в которой большой недостаток горючего в несколько раз выше, чем у нормальной. Поэтому вместо плавного сгорания, которое постепенно передает энергию поршням, происходит взрыв. В результате происходит разрушение и деформация головки, поршней и шатунов. Если ДМРВ исправен, проверьте проводку, которая соединяет его с контроллером, а также состояние колодок. Если ДМРВ, колодка и проводка исправны, необходима диагностика контроллера, для которой нужен сканер.
Тяжелый пуск горячего или холодного двигателя
Когда двигатель неожиданно стал с трудом заводиться, при этом в остальных режимах работает нормально, попробуйте завести его немного нажимая на педаль газа. Если это помогло, необходимо в первую очередь проверить состояние ДХХ. О том, как сделать это, читайте в статье (Диагностика инжектора). Если датчик поврежден, замените его, если исправен, то отключите аккумулятор, снимите воздушный фильтр и его патрубок, затем внимательно осмотрите дроссельную заслонку. Возможно, канал холостого хода забит смесью масла и пыли. Осмотрите патрубок воздушного фильтра – наличие масла внутри него говорит о неправильной работе системы смазки и необходимости чистки дроссельной заслонки.
Падение мощности на высоких оборотах
Если на высоких (свыше 4 тысяч в минуту) оборотах мощность падает даже при полностью выжатой педали акселератора (газ), необходимо провести такую же диагностику двигателя, как описано выше. Если мотор исправен, проблема в топливном насосе или редукционном клапане рампы. Измерьте давление в топливной магистрали до и после редукционного клапана, как описано в статье Диагностика инжектора.
Нестабильная работа двигателя
Плавающие холостые обороты, периодически появляющееся падение мощности или троение мотора, в большинстве случаев связаны с плохим контактом одного или нескольких датчиков или пережатым бензиновым шлангом. Поэтому проверку начинайте с постановки автомобиля на подъемник или смотровую яму. Проверьте подающий и обратный топливные шланги и трубки. При обнаружении помятостей трубок или перекрученного шланга, необходимо отремонтировать их. После этого проверьте состояние контактных колодок всех датчиков и бензонасоса, возможно одна из них грязная или окисленная. Если все колодки чистые, необходима проверка с помощью сканера, которая поможет выявить неисправность конкретного узла. Для такой проверки обратитесь в крупный, желательно дилерский, автосервис.
После того, как вы устранили проблему и наладили работу инжектора, посетите крупный дилерский автоцентр, чтобы провести сканирование системы. Это необходимо, чтобы проверить работу системы и обнаружить проблемы на начальной стадии. Если вы не профессиональный диагност инжекторых двигателей, то не проводите эту процедуру самостоятельно, даже при наличии сканера. Потому что только комплексный подход к диагностике – использование сканера и опыт диагноста позволят качественно проверить систему.
Как работает инжекторный двигатель?
Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.
Прежде чем начать разговор об этом чуде техники, развеем некоторые мифы. Инжекторный двигатель работает по тому же принципу, что и дизельный, за исключением системы зажигания, однако, это не придает ему гораздо большей мощности, чем карбюраторному. Прибавка составит максимум 10%.
Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.
Датчики инжекторного двигателя
Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.
Датчик массового расхода воздуха (ДМРВ)
Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.
Датчик абсолютного давлении и температуры двигателя (ДАД)
Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.
Датчик положения коленчатого вала (ДПКВ)
Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.
Датчик фаз (ДФ)
Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.
Датчик детонации
Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.
Датчик положения дроссельной заслонки (ДПДЗ)
По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.
Датчик температуры охлаждающей жидкости (ДТОЖ)
Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.
Датчик кислорода
Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.
Исполнительные элементы
Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.
Топливный насос
Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.
Форсунка
После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.
Дроссельная заслонка
Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.
Регулятор холостого хода (РХХ)
Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.
Модуль зажигания
В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.
Принцип работы инжекторного двигателя
Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.
Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания
После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.
Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.
Прогрев двигателя и датчик температуры двигателя
Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.
Что лучше, инжекторный или карбюраторный двигатель?
Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.
Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.
Порядок работы цилиндров ваз 21083
Порядок работы
Часто при ремонте двигателя возникает необходимость отсоединения высоковольтных проводов. Некоторые водители, отсоединив провода, не запоминают порядок, в котором они были установлены. В итоге может возникнуть путаница с проводами, а при неправильном их подключении машина не заведется. Чтобы избежать неприятной ситуации, нужно знать, как осуществляется порядок работы ДВС.
Подключение проводов на ВАЗ 2109
Принцип действия силового агрегата основан на таком свойстве газов, как способности расширяться при нагревании. Стандартный четырехцилиндровый двигатель работает в 4 такта:
- На первом такте осуществляется «впуск» воздушно-топливной смеси и части отработанных газов. Эта смесь полностью занимает объем цилиндра.
- На втором такте происходит процесс «сжатия». При этом клапаны закрыты, а поршень благодаря движению коленчатого вала и шатуну движется вверх. Рабочая смесь заполняет камеру сгорания.
- На третьем такте, называемом «расширением», благодаря свечам зажигания возникает искра, которая воспламеняет рабочую смесь. Расширяющиеся газы своим давлением действуют на поршень и заставляют двигаться его вниз. Затем благодаря шатуну начинает двигаться коленвал.
- На четвертом такте осуществляется процесс «выпуска» отработанных газов. Через выпускные клапаны они поступают в выхлопную систему автомобиля ВАЗ 2109.
Для того чтобы работа в многоцилиндровом двигателе осуществлялась плавно, а коленчатый вал не испытывал неравномерных нагрузок, необходимо, чтобы рабочие процессы осуществлялись в определенном порядке.
Существуют разные схемы, которые определяют, в какой последовательности будут функционировать цилиндры. В ВАЗ 2109 используется схема: 1-3-4-2. Нумеруют цилиндры начиная от передней крышки силового агрегата.
Если представить рабочий процесс двигателя через цилиндры, то порядок работы таков:
- В первом цилиндре осуществляется движение вверх, идет рабочий процесс: сгорает воздушно-топливная смесь, расширяются газы.
- В третьем осуществляется процесс «сжатия», при котором поршень движется вверх.
- В четвертый поступает рабочая смесь при движении поршня вниз, таким образом, осуществляется процесс «впрыска».
- Во втором поршень движется вверх, при этом отработанные газы выходят через выпускные клапана.
Возможные причины поломки
При работе ДВС возможны различные неисправности. Чтобы их обнаружить, следует выполнить следующую последовательность действий:
- Сначала надо завести машину. Мотор должен поработать на холостом ходу. В это время следует послушать, какие звуки исхдят из выхлопной трубы. Если слышны регулярные хлопки, то неисправен один из цилиндров. Причиной может быть неисправность свечей зажигания и отсутствие искры. Также неисправность может быть вызвана большим количеством поступающего воздуха или недостаточной компрессией в цилиндре.
- Необходимо осмотреть свечи. При наличии нагара, влаги или окисления, нужно почистить. Проверить зазор между электродами, который должен составлять 0,8 – 0,9 мм.
- Заменить все свечи зажигания независимо от их внешнего вида и пробега автомобиля.
- При нерегулярных выхлопах, нужно осмотреть высоковольтные провода. На их наконечниках должны отсутствовать следы окисления, изоляция не должна быть повреждена. При обнаружении дефектов провод следует заменить.
Провода подключения к катушке
Если после выполненных действий проблемы остались, то нужно обратиться на станцию техобслуживания, чтобы пройти более точную диагностику двигателя ВАЗ 2109 и отрегулировать систему зажигания на стенде.
Видео «Принцип работы ДВС»
В этом обучающем видео рассказывается о том, как осуществляется работает система сгорания.
Всё о двигателях 2108, 21083, 21081
Две статьи С. Гераськина, опубликованые
в журнале "За рулем" в 1995 году о двигателях
1100, 1300 и 1500 см для переднеприводных Самар.
Размещены без ремарок и значительных сокращений.
Близнецы — братья.
За рулем. N 3 1995г
Автомобиль ВАЗ-2109 комплектовался тремя силовыми агрегатами объемом 1,1, 1,3 или 1,5 литра. За исключением рабочего объема и, соответственно, высоты, моторы «девятки» в остальном не отличаются друг от друга. Изначально все устанавливаемые двигатели были карбюраторными, и лишь в начале двухтысячных годов производитель стал комплектовать машины впрысковыми моторами. Ниже будет рассмотрено устройство двигателя «девятки» на примере 1,5-литрового инжекторного мотора ВАЗ-2111, он также устанавливался на ВАЗ-2110 и 2114 ранних годов выпуска.
Итак, «сердце» автомобиля ВАЗ-2109 –четырехтактный четырехцилиндровый восьмиклапанный «атмосферник», работающий на бензине, с верхним расположением распредвала. В отличие от заднеприводных ВАЗ-2106 и ВАЗ-2103, у переднеприводных моделей 2109, 2110, 2114 и остальных мотор располагается поперечно. Цилиндры нумеруются от шкива коленвала, порядок их работы 1-3-4-2. Электронное управление осуществляется контроллером «Январь», Bosch или GM.
Устройство кривошипно-шатунного механизма двигателя
Устройство блока цилиндров двигателя ВАЗ-2111 идентичен блоку 21083. Отлит он из чугуна, диаметр цилиндров составляет 82 мм, в случае замены поршневой группы его можно увеличить на:
- 0,4 при первом ремонте;
- 0,8 при втором.
Коленвал
Коленчатый вал размещается внизу блока и вращается на пяти коренных подшипниках, имеющих съемные крышки, крепление которых к блоку осуществляется болтами. Крышки невзаимозаменяемы и маркируются рисками на внешней стороне. Средняя опора коренного подшипника имеет гнезда, в которые устанавливаются опорные полукольца, исключающие осевое смещение коленвала. Переднее полукольцо изготавливается из сплава стали и алюминия, заднее – из металлокерамики. При появлении люфта коленчатого вала полукольца подлежат замене.
Вкладыши подшипников – опорных и шатунных – тонкостенные, выполнены из сталеалюминиевого сплава. На внутренней стороне всех верхних коренных вкладышей, за исключением вкладыша третьей опоры, имеются канавки.
Устройство кривошипа (коленвала двигателя) следующее: он чугунный, имеет четыре шатунных и пять коренных шеек. Заодно с валом отлиты восемь противовесов. Внутри вала просверлены каналы, закрытые заглушками и имеющие двойное назначение:
- по ним подается масло у шатунным шейкам от коренных;
- они очищают масло, поскольку центробежной силой к заглушкам отбрасываются все механические примеси, не задержанные фильтром.
Последнее обстоятельство необходимо учитывать при капремонте двигателя, и при снятии коленвала, а особенно при балансировке нужно прочищать каналы от накопившихся отложений. Заглушки после прочистки заменяются на новые.
К передней части коленвала крепится шкив привода распредвала, а к нему – приводной шкив генератора, который работает еще и как демпфирующее устройство, благодаря упругому элементу между внешней и внутренней частями шкива. К заднему концу при помощи шести болтов крепится чугунный маховик. У него имеется зубчатый венец, предназначенный для запуска мотора при помощи стартера. Помимо этого, на его поверхности есть конусная лунка-метка, предназначенная для определения ВМТ после того, как двигатель собран.
Поршневая группа
Шатуны изготавливаются из стали, имеют двухтавровое сечение. Крышки обрабатываются вместе с шатунами, и потому не являются взаимозаменяемыми. На них и на шатунах штампуется номер цилиндра.
Поршневые пальцы представляют собой стальные трубки. Они свободно плавают в бобышках поршней, в которых фиксируются при помощи стопорных колец.
Устройство поршней: поршни выполнены из алюминиевого сплава, имеют три канавки в верхней части под поршневые кольца. Комплект колец для каждого поршня состоит из двух компрессионных и одного маслосъемного. Компрессионные кольца не позволяют газам попасть в картер двигателя, а маслосъемное удаляет масло со стенок цилиндра и отводит его к бобышкам для смазывания поршневого пальца.
Немного ниже располагаются отверстия для поршневого пальца (бобышки). В днище поршня имеется выточка, предназначенная для предотвращения загиба клапанов в случае обрыва приводного ремня ГРМ. У ВАЗ-2109 с объемом двигателя 1,3 литра оно плоское, поэтому обрыв ремня неизбежно приводил к выходу из строя всей поршневой группы и механизма газораспределения, и как следствие, к дорогостоящему ремонту.
Устройство головки блока и ГРМ
Головка блока (ГБЦ) у всех переднеприводных авто семейства ВАЗ, будь то 2109, 2110 или 2114 одна, общая для всех цилиндров. Они монтируется к блоку при помощи десяти винтов. При монтаже под нее подкладывается металлическая прокладка. Данная прокладка предназначена для одноразового применения, и повторно ее использовать нельзя. В верхней части ГБЦ имеется пять опор распредвала.
Распределительный вал двигателя автомобиля ВАЗ-2109, имеет индекс 21083. На некоторые двигатели устанавливаются валы 2110 или 2111, их устройство несколько отличается от 21083, что позволяет получить прирост мощности мотора. Отливается вал из чугуна, на нем расположены пять опор и восемь кулачков, открывающих клапаны. В действие он приводится с помощью зубчатого ремня от шкива коленвала. Правильно установить валы относительно друг друга можно при помощи установочного выступа на задней крышке ремня ГРМ и меток на приводных шестернях и маховике.
В ГБЦ запрессованы седла, а та же направляющие втулки клапанов. На внутренней стороне втулок имеются канавки для подвода смазки, сверху втулки закрываются маслоотражательными колпачками.
Клапаны изготавливаются из стали, причем головка впускного – из жаропрочной. Монтируются они наклонно в один ряд. Впускной клапан большего диаметра чем выпускной. Зазоры между клапанами и кулачками распредвала регулируются при помощи регулировочных шайб, обладающих повышенной износостойкостью.
Толкатели представляют собой металлические стаканчики, движущиеся в отверстиях ГБЦ. Для улучшения износоустойчивости поверхность, соприкасающаяся с торцами стержней клапанов, цементируется.
Смазывание деталей
Устройство смазки двигателя автомобиля ВАЗ-2109 (2110) комбинированное. К коренным и шатунным подшипникам, а также к опорам распредвала масло подается под давлением, цилиндры, поршни, пальцы и кольца, кулачки распредвала и толкатели смазываются разбрызгиванием, ко всем остальным сопряженным деталям смазка подается самотеком.
Спереди блока установлен масляный насос шестеренчатого типа с перепускным клапаном. Маслоприемник монтируется при помощи болтов на крышку второго коренного подшипника и корпус насоса. Маслофильтр неразборный, имеет перепускной и противодренажный клапаны. Подробно устройство системы смазки и других систем двигателя рассмотрено в отдельных статьях.
Вентиляция картера производится принудительно, газы отводятся через маслоотделитель.
Инжекторный двигатель ваз 2107
Раньше на автомобиле ВАЗ 2107 устанавливали карбюраторный движок, имеющий объем равный полутора литрам. В данный момент в «семерках» под капотом находится 1,7 литровый инжекторный двигатель ВАЗ 2107.
Как работает инжекторный двигатель ваз 2107
В карбюраторных движках воздушно-топливная жидкость образуется внутри камер карбюратора, а в инжекторах топливо впрыскивается прямо в цилиндры. Двигатели седьмой модели имеют раздельный впрыск 4-х форсунок для каждого цилиндра.
Контроль за работой каждой форсунки ведется при помощи микроконтроллера, расположенного в электронном блоке управления (ЭБУ) двигателем. В задачу элемента входит регулировка поступления горючей смеси в камеры сгорания в соответствии с положениями педали газа, с рабочими режимами и другими параметрами, которые считываются при помощи специальных датчиков и передаются на ЭБУ.
Основные функции ЭБУ — электронного блока управления:
- Контроль количества воздуха и топлива, поступающих в цилиндры двигателя.
- Формирование искры зажигания на свечах, устанавливая угол опережения в соответствии с оборотами двигателя.
- Включение и выключение топливного насоса.
- Регулирование оборотов холостого хода.
- Контроль количества углекислого газа, содержащегося в выхлопе.
- Слежение за температурой жидкости в системе охлаждения блока цилиндров.
Работа происходит в соответствии с определенным алгоритмом:
- Топливо из бензобака поступает в специальную распределительную трубку — рампу, где расположен регулятор давления, регулирующий подачу горючего к форсункам. Здесь поддерживается постоянное давление, равное 300 Мпа, излишки бензина возвращаются в бак.
- ЭБУ управляет открытием и закрытием форсунок, подавая бензин через коллекторы впускные при каждом обороте двигателя.
- В зависимости от длительности времени открытия форсунки количество подаваемого топлива разное. Время открытия рассчитывается на основании показаний датчиков, главные из которых —расход воздуха и положение заслонки дроссельной.
- Положения поршней в цилиндрах также влияют на момент открытия форсунок, об этом ЭБУ получает данные с датчика коленчатого вала.
- Не менее важны и такие параметры, как температура жидкости системы охлаждения, напряжение в электрической сети авто, обороты мотора, содержание газов в выхлопе.
Электронный модуль зажигания в ВАЗ 2107 включает в свой состав пару катушек и электронную плату. Этот узел отличается надежностью и не требует регулярных обслуживаний. В зависимости от количества оборотов коленвала и благодаря сигналам, поступающим с электронного блока управления двигателем, формируется искра.
Описание преимуществ и недостатков инжекторов ВАЗ 2107
Устройство двигателя инжекторного типа дает все основания говорить о неоспоримых преимуществах в сравнении с карбюраторными движками:
- Коэффициент полезного действия намного выше, соответственно уменьшено потребление топлива.
- Мощность мотора имеет более высокие показатели при аналогичных с карбюраторными движками объемах.
- Устойчивость работы мотора на холостых оборотах.
- Гарантированный холодный запуск.
- Нет необходимости в регулировках системы зажигания и подачи бензина.
- Оптимальность состава топливовоздушной смеси способствует уменьшению количества вредных элементов в выхлопных газах.
- Отсутствие шумовых эффектов при работе мотора благодаря наличию гидронатяжителя цепи и гидрокомпенсатора, регулирующего зазоры клапанов.
- Достижение высокого крутящего момента на разных оборотах.
Инжекторные двигатели также могут работать на газе. Наиболее предпочтительным является четвертое поколение газового оборудования.
К наиболее часто встречающимся недостаткам относятся следующие пункты:
- Инжекторный двигатель, расположенный в прежнем неудобном подкапотном пространстве, имеет затрудненный доступ к рабочим узлам и деталям.
- Повышенные требования к качеству бензина, при использовании топлива низкого качества наблюдается ускоренное загрязнение топливной системы, требующее проводить внеплановые обслуживающие мероприятия.
- При выходе из строя впрыскивающей системы необходимо обращаться к услугам специалистов, чтобы они произвели необходимое обслуживание, настройки, восстановление работы мотора.
Самостоятельно найти поломку и произвести ремонт инжекторного двигателя ваз 2107 своими руками стало не так-то просто. Переборка мотора также производится в условиях автомастерских, оснащенных специализированным оборудованием.
В условиях гаража можно производить такую операцию, как срочная или плановая замена масла в двигателе ВАЗ 2107.
Наиболее распространенные неисправности мотора ВАЗ 2107
- Неустойчивая работа силового агрегата.
- Засорение форсунок.
- Увеличение расхода бензина.
- Повышенное содержание углекислого газа в выхлопе.
- Проваливается педаль акселератора.
- Мощность снижается.
Диагностика и ремонт двигателя ВАЗ 2107 также, как и замена двигателя ВАЗ 2107 должны производиться на специальном оборудовании в автомастерской при участии высококвалифицированных специалистов. Считывание ошибок, проверка показаний датчиков, оценка работы электронного блока управления производятся при помощи компьютера с установленной специальной программой.
Автовладельцы часто задаются вопросом, где расположен номер двигателя. Индивидуальный номер двигателя находится в сопроводительных документах на автомобиль. Возможно также искать и находить номер двигателя в области расположения свечи 4-го цилиндра на наплыве корпусной детали. Номер двигателя на корпусе должен быть идентичен номеру, указанному в документации.
Почему появляются проблемы в системе впрыска
Низкое качество бензина является основной причиной засорения форсунок. Всему виной служат парафиновые отложения, оседающие на стенках и перекрывающие пути прохождения топлива.
Низкая температура окружающей среды также оказывает негативное влияние на интенсивность образования вредных отложений. Частая эксплуатация автомобиля с холодным движком вызывает ускоренное засорение форсунок инжекторной системы.
Кроме форсунок, от парафиновых скоплений страдает также заслонка дроссельная, что может вызвать изменение пропорций воздуха и топлива в смеси, подаваемой в цилиндры. Впускные клапаны также собирают на своих поверхностях тяжелые отложения, что приводит к их прогоранию и детонационным взрывам.
Очищение впускной системы от отложений можно произвести самостоятельно в условиях гаража при помощи специальной промывочной жидкости и спринцовки.
Порядок действий для промывки инжектора:
- Смешать бензин с промывочной жидкостью.
- Залить раствор в систему при помощи шланга вакуумного усилителя тормоза.
Раствор сначала запускается маленькими количествами при выключенном моторе, затем — при работающем. Нейтрализованные отложения проходят в цилиндры и полностью сгорают, о чем свидетельствует дым, кратковременно выходящий из выхлопной трубы.
Возможности переоснащения авто ВАЗ 2107
Для усовершенствования возможностей своего автомобиля водители часто применяют тюнинг двигателя ВАЗ 2107, производя замену штатного силового агрегата на мотор, имеющий большую мощность. Для проведения данного мероприятия необходимо проконсультироваться с квалифицированными специалистами. При переоснащении авто нужно учитывать следующие возможности:
- Подходит ли вновь выбранный мотор к «семерке» по габаритам и весу.
- Имеются ли возможности состыковать новый движок с трансмиссией машины.
- Совместим ли этот мотор с каждой из систем данного автомобиля.
Практика показывает, что по совместимости с автомобилем ВАЗ 2107 наиболее близки силовые агрегаты фирм Фиат либо Ниссан. Установка таких моторов требует минимальных последующих доработок.
Читайте также: