Двигатель николы тесла принцип работы
Электрические автомобили часто рекламируются как транспортные средства, имеющие более выгодное и экономное обслуживание, в основном из-за того, что электродвигатели намного проще, чем другие моторы. Они также могут иметь значительно более длительный срок службы, чем их газовые аналоги. Рассмотрим особенности электродвигателя "Тесла".
Высокая цель
Главный исполнительный директор Tesla Илон Маск сообщил, что амбициозная цель состоит в том, чтобы обеспечить работу силовых агрегатов Теслы на миллион миль. Подразумевается также, что они практически никогда не должны будут подвергаться износу.
На пути к этой цели компанией было внедрено несколько улучшенных аккумуляторов, инверторов и электродвигателей "Тесла".Теперь производитель автомобилей представляет еще одно обновленное устройство.
Недавно Tesla сообщила, что запускает серию новых моделей двигателей улучшенной производительности S и Model X. Эти электродвигатели "Тесла" могут использоваться только на новых транспортных средствах, которые построены на сегодняшний день. В новом оборудовании установлена обновленная версия заднего двигателя Tesla.
Ассортимент продукции
В целом автопроизводителю удалось создать электродвигатели трех видов:
- двигатель главного типа, в котором предусматривается наличие заднего привода;
- двигатель меньших размеров, в котором установлен передний привод - его используют для двухмоторной версии модели S и Model X;
- более крупная задняя приводная версия, имеющая рабочие характеристики двигателя.
После обновления характеристик производительности "Тесла" изменил номер своего основного двигателя с задним приводом. Впоследствии все версии, затронутые обновлением, будут оснащены электродвигателем "Тесла", в то время как все автомобили без него, модели S P100D и Model X P100D, не получили каких-либо улучшений производительности. Мощность мотора составляет 416/362/302 л. с.
Компания не хотела комментировать новый блок привода, но это должно было стать значительным обновлением, поскольку оно позволяет ускорить движение от 0 до 60 миль/час более чем на 1 секунду.
Особенности конструкции мотора
Рассмотрим характеристики электродвигателя "Тесла". Приводы Tesla построены с использованием запатентованного процесса сборки, который включает в себя:
- электродвигатель,
- узел преобразователя мощности,
- коробку передач в единый многосекционный корпус.
В прошлом году стало известно, что Tesla разрабатывает новую силовую электронику с нуля вместо использования внеоболочных компонентов для привода модели 3. Архитектура инвертора позволит задействовать электродвигатель "Тесла" мощностью более 300 кВт, что приближает его к показателям производительности модели S. Но также подразумевается, что Tesla, скорее всего, обновит модель S, чтобы еще больше дифференцировать ее повышенную производительность от меньшего дорогой модели 3. Характеристики электродвигателя автомобиля "Тесла" обеспечивают перспективность его популярности.
Особенности процесса производства "Тесла"
Первое, что можно заметить на производственном этаже Tesla Motors, - это роботы. Восемь футов высотой ярко-красных ботов, которые выглядят как трансформеры, прижимающиеся к каждому седану модели S. До восьми роботов одновременно работают над одной моделью S в четкой последовательности, каждая машина выполняет до пяти задач:
- сварку,
- заклепывание,
- захват и перемещение материалов,
- изгиб металла,
- установку компонентов.
Мнение директора компании
«Модель X является особенно сложной машиной для сборки. Может быть, самый сложный автомобиль для строительства в мире. Я не уверен, что будет сложнее », - признался Илон Маск, основатель компании-миллиардера "Теслы" и ее генеральный директор, который также выполняет те же роли в SpaceX.
Маск хочет сосредоточиться на создании лучшего в мире автомобиля, а модель S стоимостью в $ 70 000 по всем правам может претендовать на этот приз. Это полностью электрический автомобиль, он предлагает недельную поездку за одну зарядку от любой из общенациональной сети бесплатных зарядных станций на солнечной энергии.
Это самый быстрый из всех четырехдверных серийных автомобилей на планете, являясь самым безопасным автомобилем своего класса. Когда он сталкивается с машиной для испытания на столкновение, последняя, подобранная для испытания, ломается.
Асинхронный двигатель
Асинхронный электродвигатель "Теслы" – это трехфазный четырехполюсный мотор. Он состоит из двух основных частей - статора и ротора.
Статор состоит из трех частей - сердечника статора, проводника и рамы. Ядро статора представляет собой группу стальных колец, которые изолированы друг от друга и ламинируются вместе. Эти кольца имеют прорези внутри колец, которые проводящий провод будет обертывать, образуя катушки статора.
Проще говоря, в трехфазном асинхронном двигателе существует три разных типа проводников. Их можно назвать фазой 1, фазой 2 и фазой 3. Каждый тип провода обернут вокруг слотов на противоположных сторонах внутренней части сердечника статора. Как только проводящий провод находится внутри сердечника статора, сердечник размещается внутри рамки.
Как работает электродвигатель?
Принцип работы электродвигателя "Тесла" такой.Он начинается с аккумулятора в автомобиле, который подключен к двигателю. Электрическая энергия подается на статор через аккумулятор. Катушки внутри статора (изготовленные из проводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Поэтому когда электрическая энергия от автомобильной батареи подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут проводящие стержни снаружи ротора вдоль него. Вращающийся ротор - это то, что создает механическую энергию, необходимую для поворота шестеренок автомобиля, которые, в свою очередь, вращают шины.
В электромобиле нет генератора переменного тока. Как же заряжается аккумулятор? Когда нет отдельного генератора переменного тока, двигатель в электромобиле действует и как двигатель, и как и генератор. Это одна из причин, почему электромобили настолько уникальны. Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда нога находится на ускорителе - ротор тянется вдоль вращающегося магнитного поля, требуя большего крутящего момента. Но что происходит, когда отпускают ускоритель?
Когда нога сходит с акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от того, чтобы его тянуть вдоль магнитного поля). Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает батарею, действуя как генератор переменного тока.
Что означает три фазы?
Основываясь на основных принципах Никола Теслы, определенных в его многофазном асинхронном двигателе, выпущенном в 1883 году, «три фазы» относятся к токам электрической энергии, которые подаются на статор через аккумулятор автомобиля. Эта энергия приводит к тому, что проводящие проволочные катушки начинают вести себя как электромагниты. Таким образом обеспечивается работа электрического двигателя.
Поскольку эта технология продолжает развиваться, производительность электрических автомобилей начинает быстро догонять и даже превосходить их газовые аналоги. Несмотря на то что электромобили остаются на некотором расстоянии, скачки, которые делали такие компании, как Tesla и Toyota, вдохновили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.
Электрические автомобили и окружающая среда
С точки зрения крупномасштабных перспектив, есть несколько преимуществ для роста электромобилей:
- снижение шумового загрязнения, поскольку шум, электрический двигатель намного более подавлен, чем двигатель с газовым двигателем;
- электромоторы не требуют смазочных материалов и технического обслуживания, как газовый двигатель, химикатов и масла.
Подведем итоги
Электродвигатель стал особенно высоко цениться в течение последних нескольких лет. Поскольку большинство людей понимают и оценивают влияние загрязнения окружающей среды на климат, спрос на это транспортное средство, которое может принести меньше вреда природе, постоянно возрастает.
Благодаря этому требованию роста и развития некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы он работал лучше и был более эффективным. Илон Маск – один из них. Он приближает время, когда электромобили станут использоваться повсеместно. Тогда и экология планеты будет более чистой.
(с) 2003 Рус Эвенс, независимый исследователь.
В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.
Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.
Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.
Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.
Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.
Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.
Понимание работы электроавтомобиля Теслы.
Согласно закону причинно следственных связей, если второе вытекает из первого то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется "прямой пьезоэлектрический эффект". В тоже время характерно и обратное - возникновения механических деформаций под действием электрического поля - "обратный пьезоэлектрический эффект". Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.
При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений на которые принято закрывать глаза.
Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с "вязкостью" эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.
СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ
Что сделал Тесла. Тесла понял, что электродвигатель который неизбежно "гонит волны" в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.
С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как поддерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в даном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.
Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое "поднимает волну" в пространстве где работает электродвигатель. (Генератор ВЧ а не низкочастотный просто потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 Мгц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем. ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом эл. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.
ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.
Принцип работы электродвигателя в схеме, использованной Теслой.
Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигатель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разумная организация процесса.
Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям. Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество. Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.
Что это такое
Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.
Эфир Тесла
Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.
Важно. Много ходят споров, существует ли эфир. По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н. Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн. Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.
Принцип действия безтопливного генератора
Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий. Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку. Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.
Основные звенья безтопливного генератора Н. Тесла состоят:
- Расположенного над землёй приёмника.
- Накопителя-конденсатора.
- Заземление.
Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала. Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран. В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.

Схема, как сделать безтопливный генератор Тесла своими руками
Генератор тесла своими руками на 220 вольт
- диэлектрическая основа для экрана (плотный картон, пластиковая панель, фанера);
- фольгированный материал;
- провод;
- электролитический конденсатор (напряжение от180 до400 В);
- для регуляции напряжения возможна установка резистора (сопротивления).
Подобный набор материалов почти всегда есть в доме.
Заземление
Достаточно соединить провод с металлическим стержнем, заглубить его в землю. На даче можно бросить провод на любую металлическую трубу в земле. В квартире подсоединяют провод к водопроводным, газовым металлическим трубам, фазе заземления в розетке.
Экран генератора Тесла
Принимает от источников световое излучение с положительно заряженными частицами (от источника света, солнца).
Сделать его несложно, достаточно обтянуть диэлектрическую панель фольгой. Слои накладывают внахлёст. Чем больше экран для улавливания положительно заряженных частиц, тем выше напряжение в цепи. Соединяют между собой и несколько экранированных поверхностей. Они образуют цепь экранов безтопливного генератора Тесла. Соответственно расширению площади улавливающих панелей, нужно увеличивать ёмкость конденсатора, мощность рассеивания резистора.
Нужно соединить и подключить элементы схемы безтопливного генератора Тесла. Один провод (контакт) соединяют с фольгированным экраном, второй ведут от заземления. Контакты замыкают на полюсах конденсатора. В момент замыкания цепи, начинается зарядка батареи.
Материалы для безтопливного генератора Тесла
Безтопливный генератор Тесла готов. Проверить его можно, если контакты лампочки подсоединить к батарейке, она загорится.
Устройство и принцип действия
Еще одним изобретением Н. Тесла стал «резонаторный трансформатор Тесла». Он предназначен для преобразования первоначального электрического импульса в высокочастотный ток. В результате на входе трансформатора величина составляет 24 Вольта, а на выходе получают 220 Вольт. Результат фиксируется осциллографом. Показатели могут отличаться, в зависимости от конструкции, мощности трансформатора.
Резонаторный трансформатор Тесла
Резонансный трансформатор Тесла — отсциллятор (колебательная система), в которой трансформирует, изменяет напряжение переменного электрического тока в высокочастотный.
Основу трансформатора Тесла составляют два контура, из первичной и вторичной катушки. Именно в этой колебательной системе происходит трансформация первоначального импульса электротока.
Составляющие элементы катушки Тесла:
- катушки (первичная, вторичная);
- накопитель-конденсатор;
- разрядник-вентилятор (предохраняет от перенапряжения);
- защитный контур или кольцо с заземлением;
- тороид.
Сборка всех этих элементов в единое устройство позволит низкочастотный импульс электрического тока преобразовать в высокочастотное напряжение.
Схема высокочастотного трансформатора
Назначение элементов высокочастотного трансформатора Тесла
Тороид. Вращающийся по прямой линии круг образует форму тора. Это геометрическая форма тороида. Для трансформатора Тесла используют гофрированную металлической трубу.
- снижает частоту колебаний второго контура;
- увеличивает выходное напряжение;
- создаёт электростатическое поле вторичной обмотки;
- защищает от пробоя вторичную обмотку.
Первичная обмотка или резонансный контур
Проводник с небольшим сопротивлением. Для его изготовления используют медную трубку с диаметром 6 мм. С помощью дополнительных устройств меняют частоту резонанса контура.
Вторичная катушка
Основной элемент резонансного трансформатора — вторичная катушка с обмоткой. Длина обмотки в экспериментальных установках к диаметру составляет 5/1. Оптимальное количество витков медной обмотки 1000 — 1200 оборотов. Наматывают их на диэлектрические ПВХ трубы.
Материалы для изготовления высокочастотного трансформатора Тесла:
- в качестве источника питания используют трансформатор для неоновой подсветки (до 35 мА/напряжения на выходе меньше 4 кВ);
- конденсатор;
- провод из меди толщиной (от 0,3 до 0,6 мм) ;
- пластиковая труба (75 мм);
- заземление (металлический прут);
- металлическая вентиляционная труба:
- шар из металла, полый внутри (тороид);
- медная трубка для кондиционера (6 мм).
- шарик из металла, крепёж.
Монтаж системы генератора по схеме.
Система состоит из следующих блоков:
- Разрядник. 2 металлических болта, прикручивают к основе из пластика, между ними фиксируют металлический шарик. В момент подключения к трансформатору в разряднике возникает искра.
- Конденсатор. Состоит из 1 блока или составных элементов. Конденсатор накапливает заряд, чтобы пробить разрядник.
- Резонансный трансформатор, подает первичный электрический импульс.
- Вторичная катушка индуктивного контура. Медный провод наматывают на пластиковую трубу, витки должны плотно прилегать друг к другу (количество витков от 900 до 1200). Обмотку, если это не эмалированный медный провод, покрывают несколькими слоями лака, эпоксидной смолы. К вторичной катушке подсоединяют провод и выводят заземление.
- Первичный контур. Изготавливают из медной трубы, которую сгибают в несколько витков. Чтобы она не треснула, в момент изгибания, внутрь предварительно нужно насыпать песок. Между витками оставляют расстояния до 5 мм. Соединяют все элементы по схеме.
Обратите внимание! Тороид необходим, чтобы предотвратить попадание стимера на первичную обмотку. Искра выводит электронику из строя. Тороид заземляют путём соединения с основным проводом.

Эффекты катушки Тесла
Принцип действия трансформатора Тесла
От трансформатора подаётся импульс, который заряжает конденсаторы. При достижении нужного напряжения, происходит пробой газа на разряднике, искра. Первичный контур в момент замыкания генерирует высокочастотное колебание. Электромагнитные волны переходят на вторичную катушку. Возникает резонансное колебание, которое продуцирует токи высокой частоты и напряжения.
Газовые разряды
Работа высокочастотного трансформатора Теслы сопровождается интересными эффектами. Образуются различные газовые разряды и свечения:
- Стимеры. Ионизированное свечение газов в воздухе.
- Спарки. Вспыхивающие и гаснущие искровые каналы.
- Коронное свечение. Возникает вокруг искривленных частей трансформатора (голубого цвета).
- Дуга. Появляется, если в высоковольтное поле ввести заземлённый предмет, возникает светящаяся дуга.
Подобные эффекты широко используют для создания различных эстрадных, цирковых шоу.
Ионизированное свечение трансформатора Тесла
Воздействие на человека
В отличие от низкочастотного тока, высоко частотный не проникает вглубь тканей человека, стекая по поверхности тела. ВЧ ток исключает электротравму.
УВЧ аппарат
Используется в медицине для лечения:
- ультра частотная терапия, аппараты УВЧ;
- диатермия, прогревание ВЧ токами;
- индуктотермия, лечение высокочастотным магнитным полем;
- оздоровление органов с помощью микроволнового аппарата;
- дарсонваль, воздействие на части тела высоковольтными разрядами.
В повседневной жизни пользуются микроволновой печью с СВЧ излучением.
Дарсонваль
Н. Теслу по праву считают гением своего времени. Существуют мнение, что его теория эфира, гениальные разработки блокировались. Тесла мечтал обеспечить человечество бесплатной энергией, создать антигравитационный двигатель, путём преобразования энергии эфира. Бестопливный генератор, резонансный трансформатор Н. Тесла собирают своими руками даже школьники. А это значит, что кто-то продолжит его дело.
Сербско-американский физик и изобретатель Никола Тесла широко известен своими работами в области электро- и радиотехники. Его устройства, работающие на переменном токе, во многом определили технический облик XX века. Особенно Теслу любят в массовой культуре, связывая с ним совершенно умопомрачительные мифы (Филадельфийский эксперимент, создание лучей смерти и прочих «вундервафлей»). Однако совсем недавно внимание ученых привлекло одно малоизвестное изобретение Николы Теслы. Это не очередная выдуманная конспирологами «машина смерти», и даже не что-то из электротехники. Речь идет о любопытном гидравлическом механизме под названием «клапан Теслы».
Николе Тесле принадлежит более 300 патентов на разнообразные устройства: двигатели, радиоприемники, пульты дистанционного управления, рентгеновские лучи, неоновые вывески и многое другое. Однако мало кто знает о патенте US1329559A. Это гидравлический механизм, представляющий собой одну из разновидностей обратного клапана.
Чтобы понять смысл изобретения, разберемся, что вообще такое обратный клапан. Если кратко — это механизм, пропускающий среду (например, какую-нибудь жидкость) в одном направлении и предотвращающий ее движение в противоположном. Его используют в различном оборудовании, трубопроводах и насосах. Однако во многих видах обратных клапанов присутствуют подвижные детали, что ограничивает надежность и срок эксплуатации устройства. Клапан Теслы создан без применения каких-либо подвижных деталей.
Продольный разрез клапана Теслы из патента
Общий принцип работы механизма довольно прост: поток, проходящий через канал в одном направлении, разделяется на несколько потоков. Сложная геометрия канала направляет потоки таким образом, что они «гасят» друг друга, в результате чего возрастает сопротивление клапана (обратное, блокирующее направление). При прямом (неблокирующем) направлении поток практически беспрепятственно проходит через клапан. Стоит отметить, что клапан Теслы является так называемым слегка протекающим клапаном: в обратном направлении поток блокируется не полностью. Эффективность механизма определяется тем, во сколько раз сопротивление потоку в блокирующем направлении больше, чем в неблокирующем.
Поток в блокирующем и прямом направлении
На Youtube есть отличное видео, которое визуализирует принцип работы клапана Теслы:
Несмотря на кажущуюся незамысловатость механизма, физика клапана Теслы оказывается намного сложней и глубже. На днях ученые Курантовского института математических наук при Нью-Йоркском университете выпустили статью в Nature Communications, в которой подробно исследуется работа клапана Теслы для различных потоков.
Но прежде рассмотрим такую важную характеристику потока, как число Рейнольдса. Это характеристическое число, основанное на отношении инертности движения течения к вязкости жидкости. Если проще, то это отношение произведения плотности среды , ее средней скоростии гидравлического диаметра (например диаметр цилиндрической трубы) к вязкости жидкости :
Для каждого вида течения существует критическое число Рейнольдса, определяющее переход от ламинарного движения (движения без перемешивания частиц и пульсаций скоростей и давления) к турбулентному движению (с характерными перемешиваниями жидкости и пульсациями скоростей и давления). Ученые выяснили, что потоки с низким числом Рейнольдса (Re < 100) клапан Теслы «хорошо пропускает» в обе стороны, а режим движение жидкости является ламинарным. При критическом значении Re в 100-300 резко «включается» сопротивление клапана, движение переходит от ламинарного к турбулентному (критическое число Рейнольдса в данном случае является аномально низким, в цилиндрической трубе переход к турбулентному движению происходит при Re = 2000). При Re = 300-1500 сопротивление обратного направления клапана в два раза больше прямого. Зависимость сопротивления от ранней турбулентности хорошо показывает движение жидкости с красителями в блокирующем направлении: при Re = 50 нити практически не пересекаются, при Re = 200 нити перемешиваются в середине клапана, а при Re = 400 смешивание происходит на протяжении большей части длины канала.
В своем патенте Николо Тесла указал, что клапан лучше работает не с постоянными, а пульсирующими потоками. Для проверки гипотезы, ученые соорудили установку, очень похожую на преобразователь переменного тока в постоянный (сопоставление изображено на схеме ниже). Преобразователь тока состоит из источника переменного тока и четырех диодов. Благодаря расположению диодов, в первом полупериоде ток проходит только через два диода и идет по красному пути. Во втором полупериоде ток проходит через другие два диода и идет по синему пути. Таким образом, через верхнюю ветвь проходит переменный ток (AC), а через нижнюю постоянный (DC). В аналогичной гидравлической установке в качестве источника пульсирующего потока используется специальное устройство из поршня. Клапаны Теслы используются также, как диоды в электрическом преобразователе. В нижней трубке поток становится постоянным. При увеличении амплитуды и частоты пульсации возрастает скорость постоянного потока, причем характер зависимости носит нелинейный характер.
Ученые предполагают, что обнаруженная связь между сопротивлением, ранней турбулентностью и пульсацией потока найдет применения в устройствах для перемешивания и перекачки жидкостей. На данный момент клапаны Тесла используются в микронасосах. Ведутся исследования для использования клапанов Теслы в импульсных реактивных двигателях для подачи жидкостей в очень малых количествах и устройствах с высоким уровнем вибрации.
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Благодаря эффективной конструкции и простому управлению, электродвигатели успели приобрести широкую популярность среди автолюбителей и составить здоровую конкуренцию остальным транспортным средствам, оснащенным обычными типами двигателей. У моделей с электродвигателем показатели надежности и продолжительность срока эксплуатации на порядок выше по сравнению с газовыми версиями. Более подробно остановимся на основных характеристиках электродвигателя «Тесла» и постараемся разобраться, в чем же их особенность.
По словам Илона Маска, который является исполнительным директором компании Tesla, главная задача производства состоит в том, чтобы добиться непрерывной работы силовых генераторов. Разработчики предполагают, что подобные двигатели будут служить практически вечно и не изнашиваться.
В результате многолетних исследований специалистам компании удалось внедрить серию усовершенствованных аккумуляторов, инверторов и электродвигателей Tesla, а сейчас они готовы предоставить потребителю еще один улучшенный тип двигателя.
Не так давно представители Tesla сделали заявление о начале выпуска обновленных и усовершенствованных моделей двигателей серии S и X. Данные модели заднеприводного двигателя Tesla можно устанавливать только на современных автомобилях нового поколения.
Разновидности электродвигателей:
- двигатель главного типа, обладающий системой заднего привода;
- двигатель небольшого размера, оснащенный передним приводом и использующийся в моделях S и X;
- заднеприводной вариант – самый большой тип двигателя.
Впоследствии разработчики «Тесла» внесли некоторые изменения в характеристики двигателя с задним приводом, одновременно с этим поменялись номера моделей. В дальнейшем в ходе выпуска автомобильных версий, которые затронуло обновление, будут оснащаться электродвигателем «Тесла». Однако, что касается автомобилей марки S P100D и Model X P100D, их уровень производительности остался прежним с мощностью двигателя 416/362/302 л.с.
Производитель не преследовал цель заменить блок привода, хотя такой ход должен был повлиять на движение транспорта и разогнать его меньше, чем за секунду до 60 миль/час.
Отличительные характеристики электродвигателя
В основе процесса сборки электродвигателя «Тесла» лежит запатентованный способ. Основными деталями мотора являются:
- электродвигатель;
- узел преобразователя мощности;
- коробка передач, напоминающая объединенный многосекционный корпус.
Согласно последним сведениям из официального источника компания Tesla еще в прошлом году заново начала работать над новой силовой электроникой взамен применения внеоболочных элементов для привода модели 3. Конструкция инвертора собрана таким образом, что дает возможность использовать в работе электродвигатель с мощностью более 300кВт. В итоге показатели мощности обеих моделей станут практически равны. Кроме выше поставленных задач производители планируют обновить также модель S. В конечном итоге все перечисленные пункты обновления обеспечивают электродвигателям автомобилей «Тесла» высокую популярность на автомобильном рынке.
Этапы производственного процесса
Важным моментом при производстве электродвигателей Tesla Motors является использование робототехники. В рабочей зоне можно увидеть огромных красных ботов, похожих на трансформеров, которые находятся рядом с каждой моделью S. Только для сборки одной единственной модели требуется присутствие около 8 роботов. Каждый робот отвечает за выполнение конкретной функции. Один из них занимается сваркой, другой – передвигает детали и куски металла, третий – устанавливает компоненты на место.
По словам Илона Маска, владельца компании, модель X считается одним из самых сложных автомобилей для сборки и требует особых знаний и умений не только в стенах его производства, но, возможно, и в целом автомобилестроении нет подобных аналогов сборки.
На сегодняшний день миллиардер все силы вложил на создание лучшей в мире машины. Модель S, стоимость которой эксперты оценивают порядка 70 тыс.дол., имеет гарантированные шансы на победу. Автомобиль можно зарядить на бесплатных зарядных станциях, работающих от солнечной энергии. Как правило, заряда хватает на эксплуатацию авто в течение семидневного путешествия.
Модель S считается наиболее скоростным четырехдверным транспортным средством в мире. В плане безопасности она превосходит другие версии из своего класса. Во время проведения испытаний, к примеру, при столкновении с другой машиной у этой модели практически не наблюдалось серьезных поломок или каких-либо деформации.
Описание асинхронного двигателя
Асинхронный электродвигатель «Теслы» представляет собой трехфазный четырехполюсный мотор, состоящий из пары важных деталей, называемых статор и ротор. В статоре расположен сердечник, проводник и рама, а ядро образуется из нескольких стальных колец, отделенных друг от друга, но способных ламинироваться вместе. На поверхности колец имеются специальные отверстия. Через них обертывается провод, формируя катушки статора.
Говоря простым языком, в этом двигателе находятся различные типы проводников: фаза 1, фаза 2 и фаза 3. Они оборачиваются вокруг слотов внутри сердечника. Когда все элементы встают на свои места, сердечник занимает положение в рамке.
Принцип работы электродвигателя
Запуск двигателя происходит вначале в аккумуляторе, подключающемуся к мотору. В результате чего электроэнергия проходит через статор и попадает на аккумулятор. Сделанные из проводящей проволоки катушки располагаются по концам сердечника в статоре и функционируют в качестве магнитов. В процессе подачи электрической энергии от батареи к двигателю создается вращающееся магнитное поле, притягивающее проводящие стержни с внешней стороны ротора. Ротор при вращении образует механическую энергию, которая служит для движения автомобильных шестеренок, а их предназначение состоит во вращении шин.
Электромобиль не содержит генератора переменного тока. Каким образом тогда происходит зарядка аккумулятора? Подразумевается, что мотор в электрическом автомобиле работает одновременно в качестве двигателя и генератора. Это первый факт, свидетельствующий об уникальности электромобиля. Выше упоминалось, что запуск двигателя исходит от аккумулятора, излучающего энергию в направлении шестерни.
Процесс стартует в тот момент, когда водитель опускает ногу на ускоритель, тогда ротор следует за вращающимся магнитным полем. Затем ногу убирают с акселератора и ротор ускоряется, а его скорость превышает вращающееся магнитное поле в статоре. Таким образом, осуществляется перезарядка батареи.
Понятие трех фаз
В 1883 году сербский изобретатель Никола Тесла изобрел многофазный асинхронный двигатель, где все три фазы были отнесены к группе токов электроэнергии, подающейся на статор через аккумулятор машины. В результате такой энергии проводящие проволочные катушки ведут себя наподобие электромагнитов, за счет которых функционирует электрический двигатель.
Технология, придуманная Теслой, претерпевает изменения. Производство электромобилей продолжает развиваться, появляется большое количество усовершенствованных и высокопроизводительных автомобилей, которые уже начали опережать газовые механизмы. Владельцы компаний Tesla и Toyota – одни из самых передовых разработчиков в области автомобилестроения, задача которых состоит в том, чтобы научить будущее поколение обходиться без ископаемого топлива.
Влияние электромобилей на окружающую среду
Во-первых, при эксплуатации электромобилей наблюдается незначительный шумовой фон, потому что такой звук от работы данного двигателя по сравнению с газовыми моделями подавляется. Во-вторых, электрические моторы не нуждаются в техническом обслуживании и работают без всякой смазки продолжительное время.
Заключение
Электродвигатель получил широкое распространение за последние годы. Спрос на такой тип транспорта с каждым годом увеличивается. Сегодня человечество начинает все больше задумываться о том, каким способом можно снизить отрицательное воздействие техники на окружающую среду и мировую экологию. Решением проблемы как раз и выступает использование электромобилей в качестве альтернативного транспортного средства. Благодаря заслугам признанного гения Илона Маска, скоро наступит то время, когда эти машины будут доступны обычным потребителям и станут использоваться во всем мире, что, возможно, спасет нашу планету от экологической катастрофы.
Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.
Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.
Электрическое освещение стали использовать после появления дуговых ламп, среди которых наиболее простой была свеча Яблочкова в виде двух вертикально расположенных угольных электродов, разделенных слоем изолирующего материала [1–4]. Вскоре выяснилось, что на постоянном токе разнополярные электроды сгорают неодинаково, поэтому Яблочков предложил питать свечи переменным током, для чего совместно с известным французским заводом Грамма разработал специальный генератор переменного тока, конструкция которого оказалась столь удачной, что его производство доходило до 1000 штук в год [2]. Другое важное изобретение Яблочкова — это схема «дробления света» с использованием индукционной катушки (прообраза современного трансформатора) для параллельного питания от одного генератора любого числа свечей, подобно газовому освещению.
Однако эксплуатация выявила серьезные недостатки дугового освещения, особенно в быту: необходимость замены свечей через каждые два часа, шум, мерцание, большая дороговизна по сравнению даже с газом. Поэтому уже с начала 1890-х гг. электрические свечи были почти повсеместно вытеснены лампами накаливания Эдисона и применялись только в прожекторах или для больших пространств. Тем не менее, именно Яблочкову мы обязаны введением переменных токов в практическую электротехнику, что, в конечном счете, привело к решению острой проблемы дальней передачи электроэнергии, называемой тогда проблемой «распределения света».
Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке [2]. Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. [2, 4]. Однако для систем освещения такое высокое напряжение было непригодно.
Более простое решение — переход на однофазный переменный ток с повышающими и понижающими трансформаторами — было предложено известной компанией «Ганц и Ко» из Будапешта для освещения оперных театров в Будапеште, Вене и Одессе [2]. Талантливые инженеры этой компании, Микша Дери (Miksa Dèri), Отто Блати (Otto Blathy) и Карой Циперновски (Karoly Zipernowsky), создали в 1884 г. наиболее совершенные конструкции трансформатора (и они же придумали сам этот термин). Отто Блати также изобрел первый электрический счетчик электроэнергии и прославился как выдающийся шахматист.
Рис. 1. Дистанционная передача Депре
Однако развитие промышленности требовало мощных приводов, которые не могли быть созданы на базе электродвигателей переменного тока с питанием от однофазной осветительной сети. Эта проблема формулировалась как «электрическая передача механической энергии» или «передача силы»[4]. Одно из ее первых решений было предложено Депре в 1879 г. в виде дистанционной передачи в опытный вагон движения поршней паровой машины (рис. 1) [5].
У нее был датчик в виде щеточного коммутатора (1) и приемник (2), содержащий ротор (3) с двумя взаимно перпендикулярными катушками, который в свою очередь был подключен к коммутатору (4) и находился в поле магнита (5). Устройство работало со скоростью до 3000 об/мин и с моментом до 5 Нм. Эта идея позднее получила свое развитие в виде сельсинных передач и шаговых двигателей, однако подходила для использования только в приборных системах.
Решение этой проблемы в целом пришло из-за океана, где появился деятельный человек, интуитивно осознавший грядущий переход на переменный ток. Это был Джордж Вестингауз (George Westinghouse) (рис. 2) — видный американский промышленник в сфере оборудования железных дорог, основатель компании Westinghouse, решивший заняться еще и электротехническим бизнесом [2, 4].
Рис. 2. Джордж Вестингауз (1846–1914)
Для того чтобы выйти на рынок со своей продукцией, ему нужны были новые патенты, поскольку основные патенты в этой области принадлежали Эдисону, Вернеру Сименсу (Verner Siemens) и другим конкурентам. Перевести освещение на переменный ток было сравнительно просто, и Вестингауз легко вышел на этот рынок, закупив европейские генераторы и трансформаторы и запатентовав ряд своих ламп накаливания. В 1893 г. он получи большой подряд на электрификацию Всемирной выставки в Чикаго, установив там 180 тыс. ламп накаливания и тысячи дуговых ламп [4].Однако электрические машины были совсем другим делом, поэтому для их разработки он подыскал через патентное ведомство никому не известного изобретателя Николу Теслу, имевшего десятки патентов на системы переменного тока. На встрече в Нью-Йорке в 1888 г. Вестингауз предложил Тесле уступить ему все уже полученные и будущие патенты в обмен на один миллион долларов, пост технического руководителя завода в Питтсбурге и один доллар за каждую л. с. двигателей и генераторов по системе Теслы, установленных на территории США в течение ближайших 15 лет. Третье условие соглашения сыграло в дальнейшем важную роль. Тесла все эти условия принял, и так началось его плодотворное сотрудничество с Вестингаузом [4].
Будущий великий электротехник Никола Тесла (рис. 3) родился в семье сербского священника, жившей в Хорватии. Учился в Градском политехникуме и Пражском университете, но, не закончив их, поступил на работу в отделение компании Эдисона в Париже, откуда перебрался в США с рекомендательным письмом от директора отделения самому Эдисону.
Письмо гласило: «Я знаю двух великих людей: один из них вы, а второй — молодой человек, которого я вам рекомендую». Разумеется, Тесла был принят незамедлительно, и ему поручили самую ответственную работу с электротехническим оборудованием, включая ликвидацию аварий.
Рис. 3. Никола Тесла (1856 – 1943)
Впрочем, работа в этой компании продолжалась недолго. Поводом к расставанию якобы послужил отказ Эдисона выплатить обещанную премию в 50 тысяч долларов за совершенствование генераторов постоянного тока. Когда Тесла напомнил об этом шефу, тот сказал: «Молодой человек, вы не понимаете американского юмора» [4]. Однако скорее всего причиной ухода Теслы было упорное нежелание Эдисона разрешать молодому сербу заниматься бесколлекторным электродвигателем переменного тока, с мечтой о котором Тесла прибыл из Европы. Поэтому, разумеется, Тесла с радостью принял предложение Вестингауза, которое предоставляло ему прекрасные возможности для работы над своей идеей.
Еще в мае 1888 г. Тесла получил семь патентов США на системы переменного тока и бесщеточные двигатели [4]. Главным в них было новаторское предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как многофазную систему переменного тока, включающую генератор, линию передачи и двигатель переменного тока, названный Теслой «индукционным». Пример такой системы показан на рис. 4.
Здесь: 1 — синхронный генератор с возбуждением от постоянных магнитов и с двумя взаимно перпендикулярными фазами обмотки ротора (2), соединенными через контактные кольца (3) и линию передачи (4) с двухфазным индукционным двигателем (5) с обмоткой статора (6) и ротором (7) в виде стального цилиндра со срезанными сегментами [4]. Действие такого двигателя, называемого теперь асинхронным, объяснялось формированием «перемещающегося», а по современной терминологии вращающегося магнитного поля. Для линии дальней передачи предлагалось включение двухфазных повышающего и понижающего трансформаторов. В мае того же года Тесла выступил с большим докладом о многофазных системах на семинаре Американского института инженеров-электриков AIEE (предшественника IEEE). Продолжая исследования, он вскоре реализовал и другие идеи: двухфазный и трехфазный асинхронный двигатель с обмоткой в звезду, трехфазный генератор с нейтралью и без, трех- и четырехпроводные линии электропередачи и т. д. Всего по многофазным системам у Теслы был 41 патент [2].
Рис. 4. Двухфазная система Теслы
Несомненно,Тесле принадлежит патентный, а Вестингаузу промышленный приоритет на многофазные системы переменного тока, поскольку им сразу же было развернуто массовое производство двигателей, генераторов и другой аппаратуры таких систем. Вершиной этой бурной деятельности было строительство в 1895 г. самой крупной по тем временам Ниагарской электростанции на американском берегу Ниагарского водопада, высота которого составляла 48 метров. На плотине было установлено 10 двухфазных генераторов по 3,7 мВт каждый, а также проложена линия электропередачи 11 кВ длиной 40 км в Буффало, где был создан промышленный район с многочисленными потребителями электроэнергии переменного тока [2, 4].
Рис. 5. Опыт Теслы
Однако Теслу тяготила производственная деятельность, и он ушел от Вестингауза, желая и дальше развивать идею дальней передачи электроэнергии, но уже без проводов. Этим он и стал с увлечением заниматься в собственной лаборатории.Его первой мыслью было создать с помощью высоковольтного и высокочастотного излучателя мощное электрическое поле, действующее на значительные расстояния, из которого потребитель мог бы черпать электроэнергию. Тесла изобретает первый электромеханический СВЧ-генератор, использованный позднее в первых радиостанциях и для индукционного нагрева, передающую и приемную антенны, а также резонансный контур приемника для выделения определенной частоты. Всех поразил опыт Теслы, когда при включении генератора безо всяких проводов в его руках загоралась электрическая лампа, как показано на рис. 5.
Тесла был в одном шаге от изобретения радио, но не пошел по этому пути, поскольку его занимала мысль о передаче электроэнергии, а не информации. Однако именно ему принадлежит приоритет в создании телемеханики, реализованной в 1898 г. в виде дистанционно управляемого водяного катера.
Тем временем, многочисленные опыты показывали, что электролампу удается зажигать только на расстоянии не более нескольких сотен метров. Тесла попытался реализовать другой способ передачи электроэнергии: не через атмосферу, а прямо сквозь землю путем возбуждения в земном шаре, как огромном конденсаторе, поверхностных стоячих волн, в пучности которых можно было отбирать энергию в любой точке поверхности Земли. Для этого он построил в местечке Уорденклиф под Нью-Йорком огромную антенну с мощным надземным и подземным возбудителями, подключенными к отдельной электростанции, как показано на рис. 6. Опыты с этой башней по беспроводной передаче электроэнергии в период с 1899 по 1905 г., судя по всему, не дали желаемого эффекта, поскольку Тесла их неожиданно забросил, не опубликовав результатов. И ученые до сих пор спорят, чего же все-таки достиг Тесла в этом эксперименте, поскольку он работал без помощников и не оставил никаких записей [4, 6].
Рис. 6. Башня Уорденклифф
Задача беспроводной передачи электроэнергии не решена до сих пор. Последние достижения используют узконаправленные микроволновое или лазерное излучения для удаленного электропитания космических аппаратов от спутника с солнечными батареями или от управляемых дронов [7]. Экспериментально доказана возможность передачи порядка десятка киловатт на расстояние километров. Другое направление разработок — это лазерное оружие, предвозвестником которого был знаменитый «Гиперболоид инженера Гарина».
Тем не менее заслуги Теслы были всемирно признаны. В честь него единица индукции магнитного поля в системе SI названа «тесла», он был избран членом и почетным доктором наук многих академий и университетов. Одна из самых престижных наград IEEE — медаль Теслы — ежегодно присуждается за выдающиеся заслуги в области производства и использования электроэнергии. Тесле принадлежит около 800 патентов, причем, в отличие от патентов Эдисона, они считаются более новаторскими. Существует несколько памятников Тесле и посвященных ему музеев, среди которых самый впечатляющий находится в Белграде, выпущены банкноты с его портретом (рис. 7).
Рис. 7. Банкнота Сербии
Однако личная жизнь Теслы сложилась неудачно [4, 6]. В конце XIX в. в США разразился экономический кризис, поставивший компанию Вестингауза на грань разорения. Узнав об этом, Тесла явился в штаб-квартиру своего бывшего патрона и публично разорвал их первичное соглашение, потеряв около 10 млн долларов, причитавшихся ему в соответствии с третьим пунктом этого договора. Буквально через две недели после этого великодушного жеста дотла сгорела его великолепная лаборатория, и он остался без средств. В отличие от Эдисона, он не был бизнесменом и вложил все, что у него имелось, в эту лабораторию. После этого Тесла был вынужден проводить свои дальнейшие исследования на различные гранты и пожертвования, в частности, башня Уорденклифф была построена на деньги американского финансиста Моргана.
Потребность в передаче электроэнергии на большие расстояния возникла в конце XIX в., прежде всего в связи с широким внедрением систем освещения.
Такая передача на постоянном токе была технически целесообразной только при высоком напряжении и практически неприемлемой для низковольтного освещения.
Линии передачи переменного тока с трансформаторами удовлетворяли задачам освещения, однако для промышленности требовались мощные электродвигатели, все известные конструкции которых были постоянного тока.
Решение этой комплексной проблемы было предложено изобретателем Теслой и предпринимателем Вестингаузом, создавшими многофазные системы переменного тока с синхронными генераторами, линиями передачи и асинхронными двигателями.
Исследования же Теслы по беспроводной передаче электроэнергии до сих пор не получили практического завершения.
Читайте также: