Детонация двигателя ситроен с4
Неисправность датчика детонации приводит к тому, что блок управления двигателем (ЭБУ) перестает обнаруживать процесс детонации при сгорании топливной смеси в цилиндрах. Такая проблема возникает в результате слишком слабого или наоборот чересчур сильного исходящего сигнала. Как результат — на приборной панели загорается лампочка “проверьте двигатель”, а поведение автомобиля меняется из-за условий работы двигателя.
Чтобы разобраться с вопросом неисправностей датчика детонации необходимо понимать принцип его работы и выполняемые им функции.
Как работает датчик детонации
В двигателях автомобилей может использоваться один из двух типов датчиков фиксирующих детонацию — резонансные и широкополосные. Но поскольку первый вид уже устарел и встречается редко, то опишем работу именно широкополосных датчиков (ДД).
В основе конструкции широкополосного ДД лежит пьезоэлемент, который при механическом воздействии на него (то есть, при взрыве, которым, по сути, и является детонация) подает в электронный блок управления ток с определенным напряжением. Датчик настроен на восприятие звуковых волн в диапазоне от 6 Гц до 15 кГц. В конструкцию датчика входит также утяжелитель, который усиливает механическое воздействие на него посредством увеличения силы, то есть, увеличивает звуковую амплитуду.
Поданное датчиком на ЭБУ напряжение через выводы коннектора обрабатывается электроникой и потом делается вывод имеется ли в двигателе детонация, и соответственно, нужно ли корректировать угол опережения зажигания, что поможет ее устранить. То есть, датчик в данном случае является лишь “микрофоном”.
Признаки неисправности датчика детонации
При полном или частичном выходе ДД из строя проявляется неисправность датчика детонации по одном из симптомов:
- Тряска двигателя. При исправных датчике и системе управления в двигателе этого явления быть не должно. На слух появление детонации можно косвенно определить по металлическому звуку, исходящему из работающего двигателя (стук пальцев). А излишняя во время работы двигателя тряска и рывки это первое по чем можно определить неисправность датчика детонации.
- Снижение мощности либо “тупость” двигателя которые проявляются ухудшением разгона либо излишним повышением оборотов на низких скоростях. Такое происходит когда при неверном сигнале ДД осуществляется самопроизвольная корректировка угла зажигания.
- Затрудненный запуск двигателя, особенно «на холодную», то есть, при низких температурах после длительного простоя (например, утром). Хотя вполне возможно такое поведение машины и при теплой температуре окружающего воздуха.
- Повышенный расход топлива. Так как угол зажигания нарушен, то и топливно воздушная смесь не отвечает оптимальным параметрам. Соответственно, возникает ситуация, когда двигатель потребляет большее количество бензина, чем ему нужно.
- Фиксирование ошибок датчика детонации. Обычно причинами их появления является выход сигнала от ДД за границы допустимых пределов, обрыв его проводки или полный выход датчика из строя. О появлении ошибок будет свидетельствовать лампочка Check Engine на приборной панели.
Однако стоит учитывать, что такие симптомы могут указывать и на другие поломки двигателя, в том числе, других датчиков. Рекомендуется дополнительно считать память ЭБУ на наличие ошибок, которые могли возникнуть при некорректной работе отдельных датчиков.
Неисправности цепи датчика детонации
Для того, чтобы выявить неисправности ДД более точно, желательно воспользоваться электронными сканерами ошибок электронного блока управления. Тем более если на приборной панели засветилась контрольная лампа “чека”.
Лучшим устройством для этой задачи будет Scan Tool Pro Black Edition – недорогое устройство корейского производства с большим функционалом работающее с протоколом передачи данных OBD2 и совместимое с большинством современных авто, а также программами для смартфона и компьютера (с модулем Bluetooth или Wi-Fi).
Необходимо считать есть ли одна с 4-х ошибок датчика детонации и ошибки по датчикам ДМРВ, лямбде или температуры ОЖ, а затем просмотреть показатели в реальном времени по углу опережения и составу топливной смеси (ошибка по датчику ДД выскакивает при значительном обеднении).
Зачастую ошибка р0325 “Обрыв в цепи датчика детонации” указывает на проблемы в проводке. Это может быть обрыв проводов либо, что чаще, окислившиеся контакты. Нужно выполнить профилактику разъемов на датчике. Иногда ошибка p0325 возникает по причине того, что ремень ГРМ проскакивает на 1-2 зуба.
Ошибка P0328 “Высокий уровень сигнала датчика детонации” зачастую свидетельствует о проблеме с высоковольтными проводами. В частности, если на них либо пьезоэлементе пробивает изоляция. Аналогично указанная ошибка может возникнуть и по причине того, что ремень ГРМ перескочил на пару зубьев. Для диагностики нужно проверить метки на нем и состояние шайб.
Ошибки р0327 или р0326, как правило, формируются в памяти ЭБУ по причине низкого сигнала от датчика детонации. Причина может заключаться в плохом контакте от него, либо слабом механическом соприкосновении датчика с блоком цилиндров. Для устранения ошибки можно попробовать обработать средством WD-40 как упомянутые контакты, так и сам датчик. Также важно проверить момент затяжки крепления датчика, поскольку этот параметр критически важен для его работы.
В целом, можно отметить, что признаки неисправности датчика детонации очень схожи с симптомами, характерными для позднего зажигания ведь ЭБУ, в целях безопасности для мотора старается автоматически делать максимально поздним, так как это исключает разрушение мотора (если угол слишком ранний, то кроме того что возникает детонация, не только падает мощность, а и появляется риск прогорания клапанов). Так что в целом можно сделать вывод что главные признаки точно такие же как и при неверной установки угла опережения зажигания.
Причины неисправности датчика детонации
Что касается причин, по которым возникают проблемы с датчиком детонации, то к ним относятся следующие поломки:
На что влияют неисправности датчика детонации
Можно ли ездить с неисправным датчиком детонации? Этот вопрос интересует автолюбителей, впервые столкнувшихся с данной проблемой. В общих чертах ответ на этот вопрос можно сформулировать так — в краткосрочной перспективе автомобилем пользоваться можно, однако при ближайшей же возможности необходимо провести соответствующие диагностику и устранить проблему.
Ведь по принципу работы ЭБУ когда возникает неисправность датчика детонации топлива, то автоматически устанавливается позднее зажигание чтобы исключить повреждение деталей поршневой группы при возникновении реального детонирования при сгорании топливной смеси. Как результат — поднимается расход топлива и значительно падает динамика которая особенно станет заметной при повышении оборотов.
Что будет если отключить датчик детонации полностью?
Некоторые автовладельцы и вовсе пытаются отключить датчик детонации так как при нормальных условиях эксплуатации и заправке хорошим топливом может казаться ненужным. Однако это не так! Поскольку детонирование возникает не только из-за плохого топлива и проблем со свечами, компрессией и пропусками зажигания. Поэтому если отключить датчик детонации то последствия могут быть следующими:
- быстрый выход из строя (пробой) прокладки ГБЦ со всеми вытекающими последствиями;
- ускоренный износ элементов цилиндропоршневой группы;
- трещина головки блока цилиндров;
- прогорание (полное или частичное) одного или нескольких поршней;
- выход из строя перемычек между кольцами;
- изгиб шатуна;
- подгорание тарелок клапанов.
Это обусловлено тем, что при возникновении этого явления электронный блок управления не будет предпринимать мер по ее устранению. Поэтому ни в коем случае не нужно отключать его и ставить перемычку из сопротивления ведь это чревато дорогим ремонтом.
Как определить неисправность датчика детонации
При проявлении первых признаков отказа ДД, интересует логический вопрос — как проверить и определить неисправность датчика детонации. В первую очередь необходимо сказать, что проверка датчика детонации возможна не снимая его с блока цилиндров, так после демонтажа с посадочного места. Причем сначала лучше проделать несколько тестов когда датчик прикручен к блоку. Вкратце процедура выглядит так:
- установить обороты холостого хода на уровень приблизительно 2000 оборотов в минуту;
- каким-нибудь металлическим предметом (маленьким молотком, гаечным ключом) нанести один-два удара несильных (. ) по корпусу блока цилиндров в непосредственной близости от датчика (можно легонько ударить непосредственно по датчику);
- если обороты двигателя после этого упали (это будет слышно на слух), — значит, датчик исправен;
- обороты остались на прежнем уровне — необходимо выполнить дополнительную проверку.
Для проверки датчика детонации автолюбителю понадобится электронный мультиметр, способный измерять значение электрического сопротивления, а также постоянного напряжения. Самый лучший вариант проверки — с помощью осциллографа. Снятая с его помощью диаграмма работы датчика явно покажет — работоспособный он или нет.
Но так как рядовому автолюбителю доступен лишь тестер, то достаточно проверить показания сопротивления которые выдает датчик при постукивании. Диапазон изменения сопротивления находится в пределах 400 … 1000 Ом. Также в обязательном порядке необходимо провести элементарную проверку целостности его проводки — нет ли обрыва, повреждения изоляции либо короткого замыкания. Без помощи мультиметра при этом также не обойтись.
Если же проверка показала что датчик детонации топлива исправен, а ошибка о выходе сигнала датчика за пределы допустимого диапазона, то возможно стоит искать причину не в самом датчике, а в работе двигателя или коробки передач. Почему? Во всем виноваты звуки и вибрация которую ДД может воспринимать как детонирование топлива и неверно корректировать угол зажигания!
Вообщем, привет всем.
Начало жутко бесить меня мелкая вибрация в салоне при прогреве и детонация при разгоне в диапазоне с 45-60км/ч.
Повёз машину на одно сто, которые якобы занимаются французами, объяснил что меня беспокоит считали при мне ошибки. Их на удивление не было. Оставил машину, звоню вечером говорят все хорошо с ней. Мол работает ровно забирай.
Забрал машину и вспомнил что у меня есть ключ свечной, который недавно приобрёл на всякий случай. Выкрутив свечи, они в идеальном состояние. Закрутил обратно и поехал по своим делам. Прошло пол дня, завожу машину начала жутко вибрировать и появился чек. Я доехал домой нормально, машина не капризничала. Думаю сам уйдёт, утром завожу а машина вибрирует — мотор лезгинку пляшет. Оставил машину, подумал катушка умерла. Елм и Лексии у меня нету, решил купить катушку и свечи, машина два дня простояла на парковке, вечером скинул крышку двигателя, завёл вибрирует и фигачит вентилятор как не нормальный. Я поочерёдно отключат катушки, но так ничего этим и не добился. Думал что так вычислю не рабочую катушку. На машине боялся ехать, думал перегрею. Но утром встал пораньше и забрал машину с парковки, завелась как и в прошлый раз с пол тычка. Потихоньку выехал и поехал в сервис, заметил что машина едет неспешна но не вибрирует на ходу, вентилятор только в аварийном режиме, а когда на светофорах останавливался то начинало колбасить двигатель на холостом ходу. Заметил что расход не показывал бортовок при движении и запас хода.
Приехал на станцию Bosch service. Жду как отроют, без записи.
Встретил сотрудника Bosch service, они закупают часть запчастей у нашей фирмы, он меня узнал, открыл офис и впустил меня ожидать за 50 минут до открытия сервиса, мелочь но приятно.Свечи заменили и промеряли компрессию, компрессия сказали в норме.
Свечи поставил Denso XE20HR-U9, обычные. Поменяю на иридиевые через месяц, покатаюсь пока так.
По старым свечам сказали что 1 пробивала, 1 умерла, а две под концом уже .
Какая-то такая ситуация вышла.UP
Вроде было все ок, свечи заменили, ошибки стерли. Спустя часов 6, завёл машину — вибрация и чек. Машина ехала нормально двигатель работал ровно, вентилятор в аварийный режим не входил. Черт его знает что это опять, завтра буду считывать.Соплатформенные Citroen C4 первого поколения и Peugeot 307, которые появились в 2004 году, оказались очень удачными машинами и отлично продавались в России. Во многом — благодаря неприхотливым моторам. Но с рестайлингом 2008 года в гамме появился передовой по тем временам двигатель EP6, разработанный совместно с BMW.
Двигатель EP6 — восьмикратный победитель (с 2007 по 2014 год) международного конкурса International Engine Of The Year Awards в номинации «1,4–1,8 литра». Высокотехнологичность мотора заключалась в непосредственном впрыске, системе бездроссельного регулирования Valvetronic от BMW и использовании Twin-Scroll-турбин с одной улиткой и двумя разноразмерными крыльчатками. Всё это обеспечило высоченный КПД и экономичность. На новых BMW и Mini этот мотор уже не увидишь, а вот покупателям автомобилей Citroen, Peugeot или Opel Grandland X он может встретиться.
На вторичном рынке распространены турбоверсии THP (150 и 156 л.с.), а также атмосферный VTi (120 л.с.).
На волне доверия к французским маркам многие впоследствии пересели на Peugeot 308 и Citroen C4 второй генерации, в моторной линейке которых уже главенствовал EP6. И он подпортил репутацию французского концерна, так как имел массу конструктивных недостатков, часто приводивших к серьезным поломкам и дорогостоящему ремонту. Не в восторге от мотора были и владельцы автомобилей других марок, на которые он устанавливался, в том числе BMW первой серии (116i, 118i), Mini One/Cooper и других.
Первые версии мотора EP6 вживую уже сложно встретить, поэтому поговорим о периоде с 2011 года — тогда двигатель существенно модернизировали, заточив под эконормы Евро‑5. Но надежнее он при этом не стал. Родовых болячек две: образование нагара на клапанах и растяжение цепи ГРМ.
По принципу русской печки
Нагар возникал преимущественно из-за несоответствия фаз газораспределения, основной причиной которого и было растяжение цепи ГРМ. Растяжение приводило к смещению угла впускного распредвала и, как следствие, обратному выбросу продуктов горения во «впуск». В итоге впускные клапаны обрастали нагаром. При этом росла температура самих клапанов, что только усугубляло ситуацию.
Любой мотор с непосредственным впрыском по принципу работы напоминает русскую печку: горит внизу, а чистить приходится наверху — трубу. Так и с EP6. Форсунка льет топливо непосредственно в камеру сгорания, минуя клапаны (в отличие от впрыска других типов). Именно поэтому очистка клапанов моющими присадками неэффективна — ничего, кроме топливоподающей трубы, ими очистить не получится.
Очистка клапанов производится с полным демонтажом головки блока (хотя возможен вариант и без ее снятия, если конфигурация моторного отсека позволяет). При этом снимают впускной трубопровод и выпускной коллектор. Затем специальной жидкостью с гранулами при помощи пневмопистолета и пистолета, подающего эту жидкость, удаляют нагар. Такой способ очистки допускает производитель. При этом сервисмены (и официальные, и те, что обслуживают постгарантийные машины с большим пробегом) сходятся во мнении о том, что единственный достаточно эффективный способ избавиться от нагара — демонтаж головки и механическая чистка. Надо ли говорить, что такая процедура не из дешевых?
Впрочем, всё это борьба со следствием. А каковы причины?
На моторном заводе в Дуврене, что на севере Франции, начали решать проблему образования нагара с изменения технологического процесса сборки. С 2012 года коленвал стали устанавливать с расчетом на начальное растяжение цепи ГРМ, которое происходит на первых 8000–10 000 км. После этого пробега коленвал занимал условно правильное положение.
Кроме того, начиная с серий EP6 CDT M и EP6 CDT MD (это версии мотора под Евро‑5, созданные в 2013 году для рынков со сложными условиями эксплуатации, включая Россию) мотор дефорсировали (среди прочего изменили степень сжатия с 10,5 до 9,5), снизив мощность до 150 л.с., и подкорректировали углы опережения зажигания. Это дало положительный эффект при работе на некачественном бензине.
В российском представительстве Citroen уверяют, что проблема нагара на клапанах у моторов EP6 FDT современной линейки, соответствующих эконормам Евро‑6, полностью решена: с 2016 года в гарантийный период ни разу не приходилось чистить клапаны.
МНЕНИE ЭКСПЕРТА
У моторов EP6 надежная поршневая группа, поэтому без капитального ремонта (то есть без вмешательства в поршневую), но с регулярными ревизиями ГБЦ такие двигатели способны отработать до 500 000 км.
И такие машины у нас обслуживаются. Причем как с турбомоторами, так и с атмосферниками. Но обычно терпение у владельцев заканчивается раньше, и они продают автомобиль.
Атмосферную версию EP6 я назвал бы более надежной, несмотря на то что у нее есть свои проблемы. Парадокс EP6: чем чаще и дольше вы его эксплуатируете, тем дольше он служит, а если поездки редкие и короткие, то вероятность возникновения неисправностей возрастает.
Первые двигатели EP6 оказались конструктивно сырыми и неприспособленными к нашим условиям эксплуатации. А вот обращений владельцев машин с новым мотором (Евро‑6) пока было мало, причем всё сводилось к обычным работам в рамках ТО.
Сколько можно тянуть?
Почему бы не заменить однорядную цепь привода ГРМ более прочной двухрядной? Это можно было сделать давным-давно и тем самым решить проблему. Или отсрочить ее проявления?
По статистике, цепь ГРМ на турбомоторах EP6, выпущенных до 2016 года, редко дохаживает до 100 000 км. Первые признаки растяжения появляются обычно при пробегах около 60 000 км. Официальная версия такова: крутящий момент на коленвалу большой, при этом на впускном распредвалу установлен ТНВД, а выпускной «нагружен» вакуумным насосом; при резких ускорениях на цепь приходится высокая нагрузка, из-за чего она и растягивается. Вывод: налицо конструктивный просчет.
Кроме того, при значительном вытягивании цепи в приводе ГРМ возникали демпферные удары. Они передавались на ТНВД, имеющий механический привод от впускного распредвала, и выводили его из строя.
Избавиться от проблем привода ГРМ помог комплекс мер. Во‑первых, цепь ГРМ модернизировали семь раз. В каждом случае производитель старался упрочнить ее конструкцию (в первую очередь — оси, соединяющие звенья). Инженеры меняли как материалы элементов, так и процесс термообработки.
Во‑вторых, скорректировали форму верхнего успокоителя, расположенного между шестернями распредвалов. Раньше кронштейн успокоителя изготавливали из алюминия, а потому при серьезном растяжении цепи его выламывало. Теперь он стальной, более прочный. Кроме того, изменили конструкцию ТНВД. Предыдущий насос был двухплунжерный, с приводом от качающейся шайбы (по принципу работы напоминает компрессор кондиционера), сейчас применен одноплунжерный насос с приводом от кулачка, как на дизельных двигателях. Такие топливные насосы куда надежнее.
Большинство случаев гарантийного ремонта в последнее время было связано не столько с растяжением цепи, сколько с ее шумом при пуске. Причина коренилась в гидравлическом натяжителе цепи. При длительной стоянке автомобиля из него уходило масло, и первое время сразу после пуска двигателя натяжение было недостаточным. Натяжитель модернизировали, и неисправность осталась в прошлом. Все эти доработки перенесли и на моторы под Евро‑6.
Куда уходит масло?
Известны случаи, когда владельцы в межсервисный интервал (сейчас по регламенту масло меняют каждые 10 000 км) подливали больше, чем вмещает масляная система двигателя. Обычно причиной проблем становится клапанная крышка, где расположен клапан вентиляции картерных газов. Если он неисправен (например, забит масляными отложениями), в двигателе возникает избыточное давление, и первое, что продавливается, - прокладка клапанной крышки и сальники коленвала. Через них подтекает масло. Замена клапана производителем не предусмотрена, он предписывает только замену клапанной крышки в сборе. Сэкономить помогут ремкомплекты для клапанных крышек атмосферных версий — они есть в продаже.
Часто возникали течи масла (отпотевания) через крышку головки — со стороны ГРМ. Обращения по поводу этого дефекта прекратились с рестайлингом 2017 года, когда крышку модернизировали. Случалась и течь масла через уплотнитель кронштейна масляного фильтра. Неисправность устранили, заменив материал прокладки в 2015 году. С тех пор этот дефект исчез из гарантийной статистики. А еще подтекала трубка подачи масла на турбокомпрессор. Трубку модернизировали в 2016 году — изменили технологию завальцовки штуцеров. Для снижения вероятности коксования масла в трубке (она расположена близко к выпуску) ее оснастили термоизоляцией и дополнительным термоэкраном штуцера.
При отсутствии внешних течей у повышенного расхода масла может быть две причины. Первая — маслосъемные колпачки. Последний раз их модернизировали в конце 2016 года: применили более эластичный материал. Колпачки прежней конструкции при холодном пуске могли пропускать масло до тех пор, пока двигатель не прогреется.
Вторая причина кроется в конструкции поршневой группы. Она тоже значительно изменилась при переходе на Евро‑6. В частности, разработчики подобрали иной материал для второго компрессионного кольца.
Каков же нормальный расход масла? Вопрос сложный, ведь расход сильно зависит от состояния двигателя, пробега, качества обслуживания, состава масла и манеры вождения. Многие производители придерживаются нормы 2 л/10 000 км. Если приходится лить больше, имеет смысл съездить на диагностику.
МНЕНИЕ ЭКСПЕРТА
— Мы определяем ликвидность каждой модели и ее модификации, опираясь на продолжительность продажи по рекомендованной рыночной цене. Такой подход позволяет избавиться от устойчивых стереотипов, не соответствующих реальным рыночным условиям. EP6 устанавливали на разные по идеологии автомобили, и его влияние на конечную ликвидность конкретной модели минимально. Например, ликвидность Peugeot 308 с этим мотором мы оцениваем как среднюю, а Mini Cooper — как низкую.
Мы формируем ассортимент, исходя из спроса на рынке, и предлагаем не просто проверенные машины с пробегом, но и наиболее беспроблемные с точки зрения дальнейшей эксплуатации. В случае с турбированной модификацией EP6 на автомобилях Peugeot и Citroen стереотип и мнение рынка сходятся: доля 150‑сильных машин — около 10%. Поэтому сейчас таких у нас в продаже нет. А вот покупатели BMW или Mini меньше обращают внимание на наличие этого мотора.
Другие проблемы
Прочие неисправности возникали по большей части из-за проблем с качеством у поставщиков. К примеру, «трещал» клапан сброса избыточного давления турбонаддува, подтекал температурный датчик термостата. Оба дефекта устранили в 2013 году: поставщики улучшили качество продукции. Насос системы охлаждения перестал быть проблемным в 2014 году, когда его корпус стал алюминиевым.
А еще старые модификации мотора для Европы (EP6DT) из соображений экономии лишили масляного теплообменника. Они были очень термонагружены и часто «звенели», то есть страдали детонацией (ошибка P1385), - в итоге это приводило к потере мощности. Конструкцию изменили в 2013 году и даже провели отзывную кампанию. У мотора EP6 современной линейки теплообменник установлен на кронштейне масляного фильтра.
Производитель уверяет, что устранил бóльшую часть детских болезней мотора EP6 в процессе его доработки под эконормы Евро‑6. Обращения владельцев в гарантийный период существенно сократились. А что после гарантии? Статистики, позволяющей делать какие-либо выводы, пока недостаточно, но, судя по немногим машинам, отмахавшим больше 100 000 км, надежность двигателя действительно выросла.
Можно ли приобретать машину с мотором EP6 с турбонаддувом? Новую — пожалуй, да. С пробегом — при условии должного технического обслуживания и повышенного внимания к системе привода ГРМ. И обязательно сделайте перед покупкой диагностику в официальном или специализированном сервисе. Только там знают все особенности капризного Принца. В случае ремонта неисправные узлы и детали будут заменять новыми, модернизированной конструкции, и это большой плюс. Но главное, что траты на ремонт в большинстве случаев вполне приемлемые. Не зря же в клубные сервисы Peugeot-Citroen обращаются владельцы автомобилей Mini и BMW: запчасти такие же, а ремонт в итоге обходится в полтора-два раза дешевле.
НАШ ОПЫТ
На моем Peugeot 3008 2011 года с 156‑сильной версией этого мотора (Евро‑5) сигнал о растяжении цепи появился на пробеге 72 000 км. А редакционному Ситроену C4 2013 года выпуска (калужская сборка) уже дважды меняли цепь, хотя пробег немногим более 100 000 км. Так что обычная замена растянутой цепи ее модернизированной версией не гарантирует того, что проблема не повторится, причем совсем скоро. В идеале вместе с заменой цепи ГРМ нужно провести ревизию головки блока цилиндров с механической очисткой от нагара и заменой изношенных элементов.
Это самая новая модель на рынке, оснащенная мотором EP6 THP (150 л.с.). Фантастика! Путь 1000 км проделан со средним расходом 7,8 л/100 км. И это не фантазии бортового компьютера (он показывал даже меньше), а реальный расход — по чекам АЗС. Причем при почти полной загрузке и регулярных обгонах на трассе! По экономичности и своим динамическим возможностям EP6 можно поставить в один ряд с маздовским мотором Skyactiv. Правда, за японским двигателем не тянется столь длинный шлейф детских болезней.
Датчик атмосферного давления позволяет блоку управления двигателм определить плотность воздуха. ПРИМЕЧАНИЕ : Плотность воздуха снижается по мере подъема на высоту. Датчик атмосферного давления встроен в компьютер управления двигателем . ВНИМАНИЕ : Датчик атмосферного давления нельзя вынуть из компьютера управления двигателем .
Вакуумный насос
Назначение ПРИМЕЧАНИЕ : На двигателях EP3 и EP6 вакуумный насос не входит в пневмосистему. Вакуумный насос обеспечивает разряжение, необходимое для работы тормозного усилителя. Разряжение во впускном колекторе недостаточно для питания тормозного усилителя. Вакуумный насос приводится от распредвала выпускных клапанов . Размещение Рис 12.11 (15)Вакуумный насос.
Датчик давления и температуры во впускном коллекторе
- Давление воздуха во впускном коллекторе
- Температуры впускного воздуха
- Роль компьютера системы впрыска топлива в зависимости от полученной информации
- Определения количества топлива для впрыскивания
- Сопротивление при 0 °C : 5887 Ом
- Сопротивление при 20 °C : 2510 Ом
- Сопротивление при 40 °C : 2000 Ом
Изменение фаз подъема впускных клапанов
- Уменьшить время реакции
- Снизить расход топлива
- Уменьшить вредные выбросы
- Обеспечить соответствие нормам ограничения выбросов EURO4
- Информация от датчика положения педали акселератора
- Информация от датчиков положения впуска и выпуска опорного цилиндра двигателя
- Положение впускных клапанов
Электродвигатель открытия клапанов
- Канал 1 : Питание + 12 В
- Канал 2 : «масса»
- Производит установку максимального подъема клапанов
- Осуществляет управление подачей воздуха через блок дроссельной заслонки с электроприводом
Датчик положения впускных клапанов
- Производит установку максимального подъема клапанов
- Осуществляет управление подачей воздуха через блок дроссельной заслонки с электроприводом
Датчик положения педали акселератора
- Разряжение в 50 мбар во впускном коллекторе, необходимое для впуска паров топлива из системы адсорбера паров топлива и паров масла
- Аварийный режим в случае неисправности система изменения подъема клапанов
- Канал 1 : Питание 5 В
- Канал 2 : Сигнал 2
- Канал 3 : «масса»
- Канал 4 : Сигнал 1
- Канал 5 : "положительная" команда
- Канал 6 : "отрицательная" команда
Нарушение фаз в распределительных валах
- Механизм изменения положения распредвала по отношению к его приводу производится в определенные моменты работы двигателя (смещение распредвала впускных клапанов максимум на 35°, а распредвала выпускных клапанов максимум на 30°)
- Адаптирует наполнение воздухом в зависимости от нагрузки двигателя
- Облегчает очистку камеры сгорания
- Улучшает отдачу двигателя при частичных нагрузках
- Уменьшает вредные выбросы в атмосферу
- Улучшает мощностные характеристики двигателя (в частности, увеличивает момент двигателя при малых частотах вала двигателя)
- Производит установку максимального подъема клапанов
- Осуществляет управление подачей воздуха через блок дроссельной заслонки с электроприводом
- Перестает управлять электромагнитными клапанами изменения фаз распредвалов
Электромагнитный клапан изменения фаз распредвала (1268 и 1243)
- Канал 1 : Управление электроклапаном слива топливного бака
- Канал 2 : 12 Вольт
- Сопротивление обмотки: При 20°C : 7,2 ± 0,4 ом
Фазы ГРМ двигателя
Рис 12.22 "X" : Время перекрытия впускных и выпускных клапанов. "Y" : Время открытия впускных клапанов. "Z" : Время открытия выпускных клапанов. "M" : Опережение угла открытия впускного клапана (AOA). "N" : Запаздывание угла закрытия впускного клапана (RFA). "P" : Опережение угла открытия выпускного клапана (AOЕ). "Q" : Запаздывание угла закрытия выпускного клапана (RFЕ). "R" : Фаза впуска=Ход поршня вниз. "U" : Фаза сжатия=Подъем поршня. "T" : Фаза сгорания=Ход поршня вниз. "S" : Фаза выпуска=Подъем поршня. "V" : Впуск. "W" : Выпускная система. ПРИМЕЧАНИЕ : Перекрытие впускных и выпускных клапанов имеет место только между тактом выпуска " S" и тактом впуска "R". Если механизм изменения фаз впускного распредвала увеличивает запаздывание закрытия впускных клапанов "N", соответственно уменьшается опережение открытия впускных клапанов "M". Если механизм изменения фаз выпускного распредвала увеличивает запаздывание закрытия выпускных клапанов "Q", соответственно уменьшается опережение открытия выпускных клапанов "P".
Система регулирования фаз ГРМ
Описание Механизм изменения фаз распредвалов приводится давлением масла двигателя. Электромагнитные клапаны управления изменением фаз распредвалов (1268), (1243) распределяют моторное масло под давлением в 4 камеры "F" или в 4 камеры "G". Распредвал смещается под действием разности давления масла в камерах "F" и "G".
Рис 12.23 "k" : Камера ("F") механизма изменения фаз распредвала. "l" : Камера ("G") механизма изменения фаз распредвала. "m" : Палец блокировки механизма изменения фаз распредвала (при заглушенном двигателе). "n" : Канал подачи и возврата масла камер ("F"). "p" : Канал подачи и возврата масла камер ("G").ПРИМЕЧАНИЕ : Палец "m" блокировки положения механизма изменения фаз распредвала при слабом давлении масла. Палец "m" освобождает механизм изменения фаз распредвала, когда давление масла в камере "F" достигнет примерно 0,5 бар.
Ситроен С4 начал выпускаться в сентябре 2004 года. В его гардероб входили два костюма: трехдверное купе и пятидверный хэтчбек. В 2008 году «француз» пережил рестайлинг, в процессе которого слегка подретушировали внешность, изменив немного форму оптики, бамперов и интерьера. Так же обновилась линейка двигателей. В 2010 году Ситроен С4 начали собирать и в России под Калугой по методу крупноузловой сборки, а в 2011 году на смену пришел Citroen С4 второго поколения.
Двигатели
Линейка двигателей Citroen C4 представлена бензиновыми силовыми агрегатами объемом 1,4 л (90 л.с), 1,6 (110 л.с.), 2,0 л (138, 143 л.с. и 180 л.с.).
Отказ термостата на двигателях 1,6 л (TU5JP4, 110 л.с.) нередко наблюдается после 100 – 120 тыс. км. Его неисправность может привести к перегреву двигателя, к тому же он провоцирует утечку антифриза. Новый термостат обойдется в 2 тыс. рублей. Данной проблемы лишен двигатель ЕР6 (1,6 л, 120 л.с.), пришедший на смену 110-ти сильному.
Новый мотор ЕР6 был разработан совместно с BMW. Ожидания мотор не оправдал, он тоже оказался не без «пушка». Вытягивание цепи и износ посадочных мест распредвала при пробеге более 50 – 60 тыс. км не редкость. Ремонт обойдется в 15 – 20 тыс. рублей.
Катушки зажигания на обоих двигателях ходят не менее 90 – 110 тыс. км (около 5 тыс. рублей). Насос системы охлаждения прослужит не менее 60 – 80 тыс. км (1 000 рублей). Что бы лишний раз не ездить в автосервис, его замену следует производить вместе с ремнем ГРМ, замена которого рекомендуется через каждые 60 000 км.
Некоторых смущает «потрескивание» с правой стороны двигателя, чаще зимой. Причин для беспокойства нет – это клапан адсорбера, расправляющийся с парами бензина. Каталитический нейтрализатор редко ходит более 150 – 200 тыс. км.
Нередко залипает реле вентилятора системы охлаждения, в таком случае он не включается, и возникает опасность перегрева, или не выключается после остановки двигателя, продолжая молотить до полного разряда аккумуляторной батареи. В критической ситуации спасает легкое постукивание по корпусу реле до его срабатывания, но тянуть с заменой не стоит.
Коробка передач
На Ситроен С4 устанавливались 5-ти ступенчатая механическая коробка передач и 4-х ступенчатый автомат.
Сцепление механики ходит около 100 – 150 тыс. км. Оригинальный комплект нового сцепления обойдется в 9 - 10 тыс. рублей, неоригинального 5 – 6 тыс. рублей. Работа по замене потребует еще около 5 – 7 тыс. рублей. Иногда случается, что выжимной подшипник сдается раньше - при пробеге 70 – 90 тыс. км. Нередко появляется «хруст» при включении передач - причина в сдавшихся синхронизаторах. Вой или гул коробки в движении вызван подшипником первичного вала, который возможно придется заменить при пробеге более 120 – 140 тыс. км. Подшипник обойдется в 2- 3 тыс. рублей, работа по его замене – 6 – 7 тыс. рублей.
Автомат при пробеге более 80 – 120 тыс. км может перестать радовать своего владельца, начав дергаться при переключениях или уйдя в аварийный режим. Причина бед кроется в электромагнитных клапанах, которые необходимо заменить. Затраты на ремонт составят от 11 до 18 тыс. рублей.
Ходовая
Подвеска не слишком надежная. Неприятное буханье при проезде неровностей может появиться после 40 – 60 тыс. км. Его причины: сайлентблоки задней подвески (позже стали устанавливать усиленные), гуляющий по штоку пыльник заднего амортизатора (заводом изготовителем предусмотрен комплект для доработки) или задние стойки (чаще стучат зимой). Ослабленное крепление топливного бака так же провоцирует надоедливое «бумканье».
Передние ступичные подшипники сдаются через 50 – 100 тыс. км, а стойки стабилизатора – на 40 – 60 тыс. км. Опорные подшипники ходят не менее 80 – 100 тыс. км, рычаги подвески – 150 – 200 тыс. км.
Рулевые наконечники служат около 40 – 60 тыс. км, рулевые тяги – около 80 – 110 тыс. км. Рулевая рейка нередко начинает стучать при пробеге более 60 – 100 тыс. км., причина – износ направляющих втулок. Гидронасос электрогидравлического усилителя рулевого управления может дать течь через «фишку», в которой проходит силовой кабель. При замене насос придется прописывать в ЭБУ.
Передние тормозные колодки ходят не менее 30 – 50 тыс.км, задние 50 – 70 тыс. км. Передние тормозные диски работоспособны не менее 70 – 100 тыс.км, задние – 80 – 120 тыс. км.
Другие проблемы и неисправности
Качество лакокрасочного покрытия, как и у подавляющего большинства автомобилей других марок, среднее. На машинах старше 6-7 лет могут появиться вздутия. Капот нередко отслаивается от своего силового каркаса. Ремонт алюминиевого капота сложен, в некоторых случаях проще установить новый.
«Сверчки» нередко поселяются в узле крепления передних ремней безопасности. На С4 в кузове купе – это свободно болтающийся кронштейн под пластиковой обшивкой центральной стойки. На 5-ти дверных хэтчбеках «сверчок» оживает в кнопке для регулирования высоты ремня. Неприятное поскрипывание появляется в передней панели, обшивке передних дверей или в пластиковой панели на двери багажника.
Электрозамки на машинах старше 5 – 6 лет порой начинают «глючить».
Из-за обледенения одного из датчиков парковки или его загрязнения, система парковки полностью отключается. Причиной отключения может стать и электрожгут, часто перетирающийся в районе перехода бампер-багажник.
Если при включении омывателя заднего стекла, вода льется только на лобовое, значит отказал клапан распределения омывающей жидкости.
Из-за перетирания электрожгута задней двери начинает жить своей жизнью стеклоочиститель задней двери, или отказывают обогрев заднего стекла и замок. «Ситроен» проводил отзывную компанию по замене жгутов на более «крепкие».
Часто перегорают нити электроподогрева передних сидений. Авторизированные сервисы производят замену сиденья целиком, если же машина не на гарантии, то провода можно пропаять на стороне за 2 – 3 тыс. рублей.
Электрика – самое проблемное место Ситроен С4. Состояние автомобиля постоянно контролируется 4-мя различными электронными блоками, которые нередко «подвисают» при пробеге более 100 – 120 тыс. км.
Из-за нестабильности напряжения часто перегорают лампочки в фарах, а их замена то еще занятие… Генератор сдается после 100 – 120 тыс. км - чаще из-за отказа регулятора напряжения (2 – 3 тыс. рублей), реже – из-за диодного моста (6 – 7 тыс. рублей). Стартер по вине втягивающего (1,5 – 2 тыс. рублей) «умирает» при пробеге более 60 – 100 тыс. км.
Заключение
Навряд ли кто то усомнится, что Ситроен С4 – очень элегантный и красивый автомобиль, который популярен не только среди дам, но и среди молодежи. За этот неповторимый образ его владельцы готовы простить ему многие недостатки.
Двигатели EP6 считаются далеко не самыми надёжными моторами и на то есть основания. Ремонт EP6 в Москве, довольно популярная услуга, пользующаяся высоким спросом в наших автотехцентрах. В этой статье мы постарались описать вероятные причины приводящие к его поломкам и основные способы их предотвращения.
Двигатель EP6 – особенности конструкции
Два автогиганта, BMW и PSA, объединились, для совместной разработки крупносерийного бензинового мотора. И у них это получилось. Плодом сотрудничества стал двигатель EP6.
Первым автомобилем, под капот которого установили данный двигатель, стал Mini Cooper S. А уже через полгода двигатель EP6 стали устанавливать в большинство моделей концерна PSA.
Двигатель EP6 восемь раз (в период с 2007 по 2014 год) становился победителем в номинации «1.4–1.8 литра» международного конкурса International Engine Of The Year Awards.
Жюри конкурса по праву оценили высочайший КПД и экономичность мотора. Были отмечены высокотехнологичные разработки, такие как система бездроссельного регулирования Valvetronic, использование Twin-Scroll-турбин.
Однако вскоре стали появляться тревожные сообщения о проблемах.
Встретить их можно как на спортивных авто, так и на семейных седанах и минивэнах.
Двигатель EP6 имеет множество модификаций – с наддувом и без, с непосредственным впрыском и с обычным распределенным. По мощности, данная серия перекрывает все возможные потребности автомобилей из разных классов, разбег от 120 до 275 лошадиных сил.
Атмосферные и турбо моторы EP6 использовались для комплектации следующих автомобилей:
- Peugeot 207 – двухдверный кабриолет, трехдверный хэтчбэк и пятидверный универсал;
- Peugeot 308 – двухдверное купе, трехдверный хетчбэк, четырехдверный седан и пятидверный универсал;
- Peugeot RCZ – компактный спорткар;
- Peugeot 3008 – компактный кроссовер;
- Peugeot 5008 – компактвэн;
- Citroen C4 – 3-5 дверный хетчбэк и 4 дверный седан;
- Citroen DS3 – трехдверный хетчбэк.
Основные причины возникновения проблем с ЕР6
Удивительная универсальность, но возможно ли создать мотор с таким количеством возможных модификаций и не допустить ошибок? Как выяснилось, ошибаются даже инженеры PSA и BMW, а возможно надежность была принесена в жертву другим, более важным, по их мнению, характеристикам. Но факт остаётся фактом – двигатели EP6 имеют серьёзные огрехи в надежности и долговечности некоторых элементов, при этом являются довольно «капризными» к расходным и эксплуатационным материалам.
К причинам, которые ведут к возникновению ряда неисправностей и поломок, можно отнести:
- Несоблюдение рекомендаций по эксплуатации и обслуживанию двигателя.
- Неправильная эксплуатация и внешние факторы (постоянная и высокая интенсивность эксплуатации, перепады температур, высокая влажность, грубый стиль вождения).
- Использование некачественного топлива и редкая замена моторного масла.
Неисправности мотора ЕР6 и способы их устранения
Для того, чтобы быстро и по возможности безболезненно эксплуатировать данный двигатель, необходимо знать его основные «болезни» , и при первых признаках, указывающих на их появление, принимать необходимые меры.
Основной причиной появления нагара на клапанах являются маслосъёмные колпачки . Из-за их износа масло попадает в цилиндры и горит в них, образуя нагар. Если закрывать глаза на проблему, это повлияет на работу катализатора. Другим симптомом проблемы является неправильная и нестабильная работа мотора (потеря мощности, «захлебывание» при нажатии на педаль газа), так как нагар влияет на работу газораспределительного механизма и цилиндров.
Как ремонтировать? В первую очередь необходимо снять клапана и вручную очистить от нагара, после чего заменить их сальники. Если же удалось выявить появление нагара на ранних стадиях, то можно превентивно заменить маслосъемные колпачки без снятия ГБЦ. В любом случае, об этой проблеме нужно знать и держать вопрос под контролем, для этого проверяйте состояние клапанов при прохождении ТО, после пробега в 50 000 км.
В клапанной крышке мотора EP6 находится мембрана маслоотделителя, которая может порваться, что повлечет за собой высокий расход масла. Именно это, чаще всего является причиной данной неисправности.
Но это лишь одна из причин, вызывающая так называемый масложор. На расход масла влияют и состояние маслосъёмных колпачков и смещение фаз газораспределения.
По этой проблеме мы записали небольшое видео.
Причина данной неисправности – растянутая цепь ГРМ, либо износ звездочек фазорегуляторов и распредвалов.
Как ремонтировать? Для устранения проблемы, в зависимости от причины, нужно: заменить комплект ГРМ (цепь, натяжитель, звездочки), очистить масляные каналы в самом газораспределительном механизме или осуществить все вышеперечисленные операции одновременно.
Нестабильная работа силового агрегата чаще всего становится результатом работы мотора при нехватке масла.
Например, слишком длительная эксплуатация с минимальным уровнем масла приводит к быстрому износу валов и вкладышей распределительных валов. Как итог, сбиваются фазы, компьютер обнаруживает неправильный состав смеси, и ограничивает мощность двигателя с соответствующей ошибкой.
Как ремонтировать? Провести диагностику на предмет ошибок. В зависимости от кода ошибки, принимать дальнейшие решения. При любых раскладах - проверять уровень масла и поддерживать его в требуемом количестве.
Одна из проблем, с которыми иногда сталкиваются автовладельцы – это детонация двигателя, которая может произойти и на холостом ходу, и в других режимах работы силовой установки. Неполадка не только становится причиной серьезных поломок, но и нередко приводит к разрушению деталей мотора. Каковы причины детонации, какие двигатели больше всего подвержены столь опасному явлению, как уменьшить риск детонирования – все это и многое другое станет темой нашего сегодняшнего разговора.
- Понятие детонации, как она происходит
- Детонация дизеля, внешние проявление и причины
- Датчик детонации
- Как устранить детонацию в дизеле
- Последствия детонации
- Заключение
Понятие детонации, как она происходит
Случается, что возгорание топливовоздушной смеси происходит до того, как свеча накаливания, находящаяся непосредственно в цилиндре, обеспечивает правильное воспламенение при низкой температуре воздуха. Это явление, которое сопровождается сильным горением солярки, и называют детонацией дизельного двигателя.
Детонация дизеля, внешние проявления и причины
Говоря о детонации дизельного двигателя и ее причинах, важно отметить следующее. Моментальное сгорание топлива вызвано тем, что весь объем топливной смеси воспламеняется одномоментно, а не постепенно. К тому же процесс запускается раньше, еще до расчетного угла оборота коленвала, когда поршень не достиг так называемой ВМТ.
Загоревшиеся газы моментально увеличиваются в объеме, однако поршень, который в это время только поднимается, сжимает их, как следствие - давление в камере возрастает в разы.
Загорание смеси топлива и воздуха фактически и является мини-взрывом, давление от которого воздействует на стенки цилиндра, а также на днище поршня, поднимающегося навстречу газам. Вследствие удара возникают звуковые волны, и становится слышен неприятный звон.
Помимо возникновения посторонних звуков во время работы силовой установки явным признаком детонации двигателя при разгоне является изменение цвета и состава выхлопных газов. К другим внешним признакам детонации необходимо отнести следующее:
- снижение температуры выхлопных газов;
- черный дым из выхлопной системы;
- неустойчивая работа движка и как результат – потеря управления им;
- кратковременное падение мощности;
- критическое повышение температуры деталей мотора.
Причины возникновения мини-взрыва зависят от многих факторов, в частности, от того, в какой именно момент этот взрыв произошел. Так, к детонации при запуске двигателя обычно приводит обеднение топливной смеси из-за засоренности форсунок. Чтобы обнаружить засор, выполняют проверку всех фильтров в топливной системе. Обычно после прогрева нормальная работа восстанавливается, детонация прекращается.
К детонации дизельного двигателя при разгоне приводит:
- вышедший из строя датчик заслонки;
- топливо низкого качества;
- уже упомянутая нами выше засоренность форсунок или их неисправность.
Эксперты утверждают, что после возобновления работы датчика заслонки силовая установка работает нормально при любых условиях, в том числе и на повышенных оборотах. В таком случае определить наличие или отсутствие детонации можно только при выключенной передаче под большой нагрузкой.
Мини-взрыв проявляется исключительно во время движения транспортного средства, детонация двигателя при выключении зажигания невозможна. Если водителя настораживают посторонние звуки или иные признаки неисправности, причины следует искать в другом, поэтому рекомендуется немедленно обратиться на СТО.
Датчик детонации
Не так давно в продаже появилось устройство, именуемое датчиком детонации дизельного двигателя. Речь идет о специальной детали, которая мониторит уровень детонации во время работы ДВС.
Устанавливают устройство обычно в блоке цилиндров.
Делают это для того, чтобы получить максимальную мощность силового агрегата и без ущерба для него добиться оптимальных показателей топливной экономичности. Датчик необходим для своевременной подачи на электронный блок управления сигнала о возникновении детонации, превысившей допустимый порог.
Как устранить детонацию в дизеле
Прежде чем устранять детонацию, важно определить причину ее возникновения. В подавляющем большинстве случаев это неправильный угол зажигания и обедненная топливно-воздушная смесь, вызванная некачественной соляркой.
Для устранения детонации обычно делают следующее:
- Эксплуатация мотора на более высоких оборотах, когда время сгорания топлива в сочетании с максимальным давлением заметно сокращается.
- Применение интеркулера, чтобы воздух перед попаданием в цилиндры охладился.
- Использование качественной солярки.
- Торможение силовой установки для опережения момента зажигания.
Последствия детонации
Во время детонации температура в камере сгорания поднимается до 3,5 тыс. градусов. Стремительно возрастает и давление, нагрузка на мотор становится критической. Особенно плачевно все это может закончиться для современных моторов, сделанных из сплава алюминия. Последствия детонации двигателей могут быть следующими:
- перегрев и поломка деталей мотора;
- потеря мощности;
- разрушение перегородок в кольцах поршней;
- выгорание прокладки, расположенной под блоком цилиндров.
В сложных случаях высок риск проворачивания КШМ, что ведет к вращению коленвала в противоположном направлении. В конечном итоге это ведет к разрушению узлов силовой установки и необходимости сложного ремонта.
Заключение
Детонация двигателя – явление крайне неприятное, способное повлечь за собой плачевные последствия. Именно поэтому при появлении малейших признаков возникновения в дизельном моторе мини-взрывов необходимо обратиться в сервисный центр для обнаружения причины неисправности и своевременного ее устранения.
Читайте также: