Давление остаточных газов в цилиндре двигателя увеличивается при уменьшении
Главное меню
Судовые двигатели
Главная Судовые двигатели внутреннего сгорания Идеальные циклы и тепловые процессы в двигателях Коэффициент остаточных газов в цилиндреПосле окончания процесса выпуска часть продуктов сгорания, именуемая остаточными газами, остается в цилиндре и смешивается с поступающим свежим зарядом. Степень очистки цилиндра от продуктов сгорания оценивается коэффициентом остаточных газов ?r, которым называется отношение количества молей остаточных газов Мr к количеству молей свежего заряда L.
Как это было показано ранее, с увеличением ?r уменьшается коэффициент наполнения и уменьшается количество свежего заряда. Необходимо, чтобы коэффициент остаточных газов был минимальным.
Если для четырехтактных двигателей без наддува принять, что объем остаточных газов при температуре Тr и давлении рr равен объему камеры сжатия, то значение коэффициента остаточных газов определится
При работе с наддувом р0 = рк и Т0 = Тк, если не учитывать продувку камеры сгорания, коэффициент остаточных газов четырехтактного двигателя будет равен
Из полученного выражения (18) следует, что чем больше ?, тем меньше будет ?r; объясняется это тем, что при увеличении е уменьшается объем камеры сжатия, а следовательно, и уменьшается количество остаточных газов. С повышением давления остаточных газов рr и понижением их температуры Tr ?r увеличивается, так как плотность остаточных газов при этом повысится, а следовательно, возрастает и их количество.
Величина давления рr определяется противодавлением в выпускном тракте и числом оборотов двигателя. Обычно рr колеблется от 1,02 до 1,15 ата. Наименьшие значения имеют тихоходные двигатели, а наибольшие — быстроходные. При работе с наддувом рr зависит от величины давления наддувочного воздуха.
Величина температуры остаточных газов Тr зависит от степени сжатия, от нагрузки и числа оборотов двигателя. С увеличением степени сжатия Тr уменьшается, так как при этом возрастает степень расширения. При увеличении нагрузки и числа оборотов двигателя температура Тr возрастает.
Коэффициент остаточных газов четырехтактных дизелей без наддува равен 0,06—0,04 и при наддуве 0,04—0,02; при наличии продувки камеры сгорания ?r становится равным нулю.
В карбюраторных четырехтактных двигателях ?r достигает величины 0,07—0,12. Такое большое значение ?r карбюраторных двигателей объясняется малой степенью сжатия у них.
На что влияет компрессия?
В официальной технической литературе слово «компрессия» не используется. Первоисточники называют это давлением конца такта сжатия. Данный параметр измеряется при положении поршня в верхней мертвой точке (ВМТ) и без взрыва топлива в камере сгорания. Многие автомобилисты полагают, что замер «компрессии» в цилиндрах двигателя является главной процедурой диагностики. Если давление ниже нормы, то двигатель, по их мнению, непременно нуждается в капитальном ремонте. Однако насколько показательной является компрессия в действительности?
Рвение автолюбителей разбираться в моторах весьма похвально, однако для того, чтобы рассуждать о столь сложных инженерных устройствах, необходимо учить матчасть. Одно из вопиющих заблуждений дилетантов является отождествление компрессии (то, что под ней подразумевают) и степени сжатия. Что такое компрессия было обозначено выше. А вот степень сжатия – это совсем другое. Степень сжатия является безразмерным параметром, который описывает геометрию цилиндра, в частности, отношение полного объема цилиндра к объему камеры сжатия (объему над поршнем, когда тот находится в положении ВМТ). Пространство камеры сжатия часто называют «камерой сгорания». Но если придерживаться точной терминологии, то последнее название некорректно, поскольку сгорание топлива происходит также и при более низких положениях поршня.
Именно изменение геометрии цилиндро-поршневой группы, мы получаем обрабатывая двигатель нашим составом НТ-10.
Важно понимать, что компрессия (будем так ее называть) всегда зависит от степени сжатия, а степень сжатия от компрессии – никогда. На величину компрессии влияет множество других параметров. Это и температура при проведении измерений давления, и регулировка фаз газораспределения, давление начала сжатия, герметичность камеры, зависящая от степени изношенности поршневых колец и стенок цилиндров, а также многое другое.
Заблуждение первое :«Поднял компрессию – увеличил мощность»
Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания.
Теоретически максимальное давление в цилиндре в конце такта сжатия, когда поршень находится в верхней мертвой точке (ВМТ), зависит от целого ряда факторов. С точки зрения ремонтной практики они в конечном счете влияют на количество поступающего в цилиндр воздуха — чем оно больше, тем выше компрессия. В первую очередь отметим положение дроссельной заслонки — ее прикрытие или закрытие, очевидно, сильно уменьшит давление в цилиндре. Понятным образом на количество воздуха влияет и степень загрязнения воздушного фильтра.
Некоторые механики допускают ошибки в установке фаз газораспределения, например, при монтаже ремня или цепи привода распределительного вала. Это приводит к изменению момента закрытия впускного клапана, сдвигая начало сжатия в цилиндре в ту или другую сторону. Тогда и значения компрессии будут отличаться.
Довольно сильно на компрессию влияют зазоры в приводе клапанов. Так, малый зазор в приводе впускных клапанов приведет к более позднему их закрытию и, соответственно, к уменьшению компрессии. Одновременно малые зазоры в выпускных клапанах увеличат так называемое перекрытие клапанов — величину угла поворота коленвала, в течение которого открыты одновременно оба клапана в цилиндре. Результат тот же -компрессия уменьшится.
На компрессию повлияет и температура двигателя — чем она меньше, тем сильнее будет охлаждаться воздух, сжимаемый в цилиндре, и тем меньше будет его давление.
Но и это еще не все. Как только воздух в цилиндре оказывается достаточно сжат, станут проявляться разного рода его утечки через зазоры между изношенными или поврежденными деталями, уплотняющими полость камеры сгорания.
Естественным образом из сказанного вытекают выводы о том, что утечки будут минимальными, если цилиндр имеет идеально круглую форму, отсутствуют продольные риски на его рабочей поверхности, поршневые кольца идеально прилегают к ней и к торцевым поверхностям канавок поршня; если близка к нулю величина зазоров в замках колец и, наконец, тарелки клапанов идеально прилегают к седлам. Напоминаем это и есть геометрия ЦПГ.
Заблуждение второе: «Нет компрессии – сразу на капиталку»
Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?
Нет, конечно! Можно назвать множество возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Именно метод диагностирования АГЦ, по которому мы работаем, позволяет наиболее точно определить степень износа двигателя. Низкая компрессия – еще не приговор!
Заблуждение третье: «Чем выше компрессия, тем лучше»
Рост до 15-17 бар не столько полезен, сколько вреден для двигателя. Т.к. надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.
А в итоге при такой компрессии можно получить детонацию, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо.
Так на что влияет компрессия?
На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.
В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодом пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.
Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.
Неравномерная по цилиндрам компрессия это одна из причин вибрации двигателя, особенно ощутимая на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю. Если компрессия в цилиндрах неравномерна, то происходит разбалансировка двигателя. Именно поэтому наша задача в идеале получить одинаковые заводские значения компрессии по всем цилиндрам. Что мы и получаем с использованием нашего состава.
Если хотите получить очень "бодрый" двигатель, уменьшить вибрацию, улучшить динамику, то лучше получить одинаковые значения компрессии по цилиндрам, и снизить потери мощности ДВС за счет уменьшения коэффициента трения, при улучшении показателей по КПД, Именно эти задачи наша компания может решить.
В камере сгорания остаётся не вытесняемая поршнем чаек, продуктов сгорания - Mr, называемых остаточными газами.
Отношение числа киломолей остаточных газов Mr, оставшихся в цилиндре от предыдущего цикла, к числу киломолей свежего заряда , поступившего в цилиндр в процессе впуска называется коэффициентом остаточных газов т.е.
где Mr - число киломолей остаточных газов;
- число киломолей топливовоздушной смеси.
Величина коэффициента остаточных газов -характеризует качество очистки цилиндра от продуктов сгорания и рассчитывается по формуле:
где: - подогрев свежего заряда на впуске, К;
- температура остаточных газов, К;
-давление остаточных газов, МПа;
С точки зрения получения наибольшей экономичности двигателя оптимальное значение степени сжатия находится и пределах от 11до 13 [2]
Ориентировочные значения геометрической степени сжатия для современных автотракторных двигателей составляют [2]:
• дня карбюраторных двигателей - от 6 до 9;
• для дизелей без наддува - от 16 до 20;
• для дизелей с наддувом - от 12 до 15
• в отдельных высокофорсированных автомобильных карбюраторных двигателях 11.
Как видно, реальные значения степени сжатия расходятся с оптимальными. В карбюраторных двигателях оптимальное значение степени сжатия недостижимо в связи с возникновением детонационного сгорания. В дизелях фактические значения степени сжатия превышают оптимальные в связи с необходимостью создания надёжного самовоспламенения впрыскиваемого топлива на любом режиме работы, учитывая, что температура в процессе сжатия к моменту впрыскивания топлива должна на 200. 400°С превышать температуру самовоспламенения топлива.
При расчёте величины , , принимаются исходя их существующих данных по двигателям [2].
Для карбюраторных двигателей:
Для дизелей без наддува:
Для дизелей с наддувом:
, МПа.
Для двухтактных дизелей с прямоточной продувкой:
Значение для автотракторных двигателей варьирует в следующих пределах:
• для бензиновых и газовых двигателей без наддува - от
• для дизелей без наддува и с наддувом - от 0,03 до 0, О6;
• для двухтактных дизелей с прямоточной продуктивности от 0,04 до 0,1
Температура в конце впуска
Температура газа, находящегося в цилиндре двигателя в конце впуска, зависит от температуры рабочего тела , температуры остаточных газов , коэффициента остаточных газов подогрева свежего заряда :
У современных четырёхтактных двигателей значение варьирует вследующих пределах:
• для карбюраторных двигателей - от 320 до 380 К;
• для дизелей без наддува - от 310 до 350 К;
• для четырёхтактных дизелей с наддувом и двухтактные дизелей с прямоточной продувкой - от 320 до 400 К.
Коэффициент наполнения
Коэффициент наполнения представляет собой отношение действительного количества свежего заряда, поступившего в цилиндр в процессе впуска, к тому количеству, которое могло бы поместиться в рабочем объёме цилиндра Vh при условии, что температура и давление в нём равны температуре и давлению среды, из которой поступает свежий заряд ( и -для двигателей без наддува; и - для двигателей с наддувом).
Для четырёхтактных двигателей значение составляет
• для карбюраторных двигателей - от 0,75 до 0,85;
• для дизелей без наддува - от 0,8 до 0,9;
• для дизелей с наддувом (при 0,2 МПа и без промежуточного охлаждения воздуха) - от 0,8 до 0,95
• для двухтактных дизелей с прямоточной продувкой - от0,75 до 0,85
Расчёт сжатия
Показатель политропы сжатия
При сжатии воздуха температура деталей остаётся примерно неизменной. Воздух в начале сжатия имеет температуру меньшую, чем окружающие поверхности, а затем его температура за счёт сжатия становится выше температуры окружающих деталей. Вследствие этого изменяется направление теплопотока. Наличие теплообмена определяет процесс сжатия как политропный: , с переменным показателем , зависящим от характера теплообмена и количества переданной теплоты.
С учётом реальных условий теплообмена в двигателе на показатель политропы будут влиять конструктивные параметры, режимы работы и условия эксплуатации двигателя.
Наибольшее влияние на оказывает частота вращения коленчатого вала п, так как сокращается время теплообмена и уменьшается утечка воздуха через зазоры поршневых колец.
При п от 600 до 2500 мин можно пользоваться ориентировочной зависимостью:
где - показатель политропы сжатия;
п - частота вращения коленчатого вала, мин .
При увеличении диаметра цилиндра D с сохранением хода поршня S, показатель политропы увеличивается, т. к. уменьшается отношение площади поверхности цилиндра к объёму, и теплоотдача от воздуха понижается. Уменьшение S при сохранении D приводит к увеличению теплоотдачи, и - уменьшается.
Ориентировочные значения показателя политропы сжатия для современных автотракторных двигателей находятся в следующих пределах:
• для карбюраторных двигателей (при полном открытии дроссельной заслонки) -1,34. 1,39;
• для дизелей без наддува - 1,36. 1,4;
• для дизелей с наддувом (при давлении наддува)
0,2 МПа и без промежуточного охлаждения воздуха после компрессора) - 1,35. 1,38.
Давление в конце сжатия
Расчёт давления в конце сжатия , МПа, ведут по уравнению политропического процесса:
Ориентировочные значения для современных автотракторных двигателей находятся в следующих пределах [2]
• длякарбюраторных двигателей при полном открытии дроссельной заслонки - от 0,9 до 1,6 МПа;
• для дизелей без наддува - от 3,5 до 5,5 МПа;
• для дизелей с наддувом (при давлении наддува
0,2 МПа и без промежуточного охлаждения воздуха после компрессора) - от 6 до 8 МПа.
Температура в конце сжатия
Расчёт температуры в конце сжатия Тс, К, ведут по уравнению политропического процесса:
Для современных автотракторных двигателей значения Тс находятся в следующих пределах [2]:
• для карбюраторных двигателей при полном открытии дроссельной заслонки - от 650 до 800 К;
Рабочим циклом двигателя внутреннего сгорания называют совокупность процессов, повторяющихся в цилиндре в такой последовательности: впуск свежего заряда, сжатие, расширение или рабочий ход, выпуск.
Цикл может быть осуществлен либо за четыре, либо за два такта. В первом случае цикл называется четырехтактным, во втором – двухтактным.
Рабочий цикл поршневого двигателя проходит по одной из двух схем, представленных на рис.1. На схеме, изображенной на рис.1,а, представлен рабочий цикл с внешним смесеобразованием (бензиновые и газовые двигатели), а на рис.1,б – рабочий цикл с внутренним смесеобразованием (дизели и бензиновые с непосредственным впрыском).
Рисунок 1 – Схемы рабочего цикла двигателей
а) с внешним смесеобразованием; б) с внутренним смесеобразованием
Рабочий цикл четырехтактного бензинового двигателя
При рассмотрении цикла условно принять, что начало рабочего цикла совпадает с ВМТ, а каждый такт начинается и заканчивается в одной из мертвых точек.
Первый такт – впуск
При вращении коленчатого вала (по направлению стрелки) поршень перемещается из ВМТ в НМТ, впускной клапан открывается, выпускной клапан закрыт. Через открытый клапан цилиндр соединяется с системой впуска. Вследствие гидравлического сопротивления впускного трубопровода, впускного клапана и увеличения объема при перемещении поршня давление в цилиндре становится меньше атмосферного и воздух поступает в цилиндр. Горючая смесь, состоящая из паров мелкораспыленного топлива и воздуха, поступает под действием разряжения из впускного трубопровода в цилиндр, где смешивается с небольшим количеством остаточных газов, оставшихся от предыдущего цикла, и образует рабочую смесь.
При подходе поршня к НМТ давление в цилиндре на 0,01…0,02 МПа меньше атмосферного, а температура смеси вследствие подогрева от контакта с нагретыми деталями двигателя и перемешивания с отработавшими газами повышается до 350…390 К.
Второй такт – сжатие
Такт впуска заканчивается, когда поршень приходит в НМТ. При дальнейшем повороте коленчатого вала поршень перемещается из НМТ в ВМТ и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми.
Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает (в зависимости от степени сжатия) 1,0…1,5 МПа, а температура 600…650 К.
Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение топлива в бензиновых двигателях, осуществляемое электрической искрой, обычно производится до прихода поршня к ВМТ.
Третий такт – расширение или рабочий ход
Оба клапана закрыты. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов, вследствие чего в цилиндре резко увеличиваются температура и давление. Под действием давления газов поршень перемещается к НМТ, газы расширяются и совершают полезную работу.
В начале расширения давление составляет 3…4 МПа, температура 2300…2500 К, а при подходе поршня к НМТ, вследствие увеличения объема, давление снижается до 0,3…0,5 МПа, а температура составляет 1200…1500 К.
Четвертый такт – выпуск
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в атмосферу.
При такте выпуска не достигается полная очистка цилиндра от отработавших газов, поэтому в конце выпуска давление в цилиндре составляет 0,105…0,120 МПа, а температура 700…900 К.
После окончания такта выпуска рабочий цикл повторяется в рассмотренной выше последовательности.
Только при такте расширения совершается полезная работа, а остальные такты являются вспомогательными и поршень при этих тактах перемещается за счет энергии вращающегося коленчатого вала с маховиком и работы других цилиндров (в многоцилиндровых двигателя).
Рабочий цикл четырехтактного дизеля
Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного бензинового двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла бензинового двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом.
Первый такт – впуск
При движении поршня от ВМТ к НМТ давление в цилиндре снижается вследствие гидравлического сопротивления воздухоочистителя, впускного трубопровода и через открытый впускной клапан в цилиндр поступает очищенный воздух. Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура его повышается, но меньше, чем в бензиновом двигателе, так как количество остаточных газов в цилиндре дизеля меньше, чем в бензиновом двигателе. Кроме того, подогрев воздуха происходит и от контакта с нагретыми деталями двигателя, и в конце такта впуска температура воздуха достигает 320…350 К, а давление 0,08…0,09 МПа.
Второй такт – сжатие
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и при подходе поршня к ВМТ составляют: давление 4,0…5,5 МПа, а температура 850…1000 К. В конце такта сжатия с помощью насоса через форсунку в цилиндр под высоким давлением впрыскивается мелкораспыленное топливо. Давление впрыскивания составляет 13,0…18,5 МПа. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с воздухом и воспламеняются.
Третий такт – расширение или рабочий ход
При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличивается давление и температура образовавшихся газов.
В начале такта расширения давление газов составляет 6,0…8,0 МПа, а температура 2100…2300 К.
Под действием давления поршень из ВМТ перемещается в НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют: давление 0,2…0,4 МПа, температура 800…1200 К.
Четвертый такт – выпуск
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в атмосферу.
В конце такта выпуска давление газов 0,11…0,12 МПа, температура 800…900 К.
После такта выпуска рабочий цикл дизеля повторяется.
Рабочий цикл двухтактного карбюраторного двигателя
В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы впуска и выпуска совмещены по времени с процессами сжатия и расширения. В отличие от четырехтактного двигателя очистка цилиндра от отработавших газов и наполнение его свежим зарядом происходит при положении поршня вблизи НМТ. При этом очистка цилиндра от отработавших газов осуществляется не выталкиванием их поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью.
На рис.2 представлена схема двухтактного карбюраторного двигателя с кривошипно-камерной продувкой.
Рисунок 2 – Схема двухтактного карбюраторного двигателя
1 – впускное окно; 2 – выпускное окно; 3 – свеча зажигания; 4 – цилиндр; 5 - поршень; 6 – перепускное окно; 7 – канал; 8 – герметичный картер
В этом двигателе нет специального механизма газораспределения. Вместо него цилиндр имеет окна: впускное окно 1, соединяющее цилиндр с карбюратором; выпускное окно 2 и перепускное окно 6, соединяющее цилиндр с герметичным картером при помощи канала 7. Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции механизма газораспределения. В цилиндр двухтактного двигателя с кривошипно-камерной продувкой горючая смесь поступает через картер. Для подготовки двигателя к работе необходимо сделать два подготовительных хода: первый – впуск горючей смеси в картер; второй – перепуск горючей смеси из картера в цилиндр.
Первый такт
Поршень 5 перемещается снизу вверх и боковой поверхностью сначала закрывает перепускное окно 6, а затем и выпускное 2. В цилиндре происходит сжатие рабочей смеси, а в картер вследствие разряжения из карбюратора поступает горючая смесь. При подходе поршня к ВМТ между электродами свечи зажигания появляется электрическая искра, в результате чего рабочая смесь в цилиндре воспламеняется и сгорает.
Второй такт
Образовавшиеся горячие газы расширяются и давят на поршень, вследствие чего он опускается вниз, совершая рабочий ход. В конце рабочего хода поршень сначала открывает выпускное окно 2, и отработавшие газы из цилиндра через глушитель выходят в атмосферу. Опускаясь ниже, поршень открывает перепускное окно 6, и горючая смесь по каналу 7 поступает в цилиндр, заполняет его и вытесняет отработавшие газы. Незначительная часть горючей смеси вместе с отработавшими газами выходит в атмосферу и не принимает участия в рабочем цикле.
Примечание: Параметры цикла (давление и температура) соответствуют параметрам четырехтактного бензинового двигателя.
Двухтактные двигатели, работающие по данной схеме газообмена, имеют сухой картер, т.е. в картере отсутствует смазочный материал. Для смазывания трущихся деталей двигателя смазочный материал добавляют к топливу в пропорции 1:20 по объему. Следовательно, горючая смесь в виде воздуха, топлива и масла обеспечивает при своем движении одновременно и смазку двигателя.
На рис.3 показан принцип действия четырех- и двухтактного двигателя внутреннего сгорания.
Давление и температура свежего заряда на входе в двигатель, в случае работы без наддува, являются давление и температура окружающей среды и ,которые для стандартизированных условий имеют следующие значения: .
Для двигателей с наддувом ,давление и температура на входе в двигатель являются давление температура ,на выходе из компрессора. В случае присутствия промежуточного холодильника, воздух из нагнетателя поступает в него, а затем в цилиндр двигателя. В этом случае давление и температура на входе в двигатель являются давление за холодильником.
2.2 Давление остаточных газов .
Давление остаточных газов устанавливается в зависимости от числа и расположение клапанов, газодинамических сопротивлений во впускном и выпускном коллекторах, в том том числе и сопротивления глушителя, фаз газораспределения, характера наддува, быстроходности двигателя, нагрузки, системы охлаждения и других факторов.
На номинальном режиме без наддува давление остаточных газов определяется выражением:
2.2.2 Температура остаточных газов .
Температура остаточных газов зависит от типа двигателя, степени сжатия, коэффициента избытка воздуха и частоты вращения.
2.3.Температура подогрева свежего заряда .
Подогрев свежего заряда происходит при его контакте со стенками впускного тракта и цилиндра, а также из-за остаточных газов. Величина зависит от расположения и конструкции впускного коллектора, системы охлаждения, быстроходности двигателя и вида наддува. Повышение температуры улучшает процесс испарения топлива, но снижает плотность заряда, что отрицательно влияет на наполнение.
Таблица подогрева свежего заряда .
2.4. Давление свежего заряда в конце впуска .
Давление свежего заряда в конце впуска является основным фактором, определяющий количество рабочего тела, поступающего в цилиндр двигателя.
2.4.1. Коэффициент газодинамических сопротивлений на впуске и средняя скорость движения заряда в наименьшем сечении впускной системы .
2.4.2.Плотность свежего заряда .
Плотность свежего заряда определяется выражением для двигателей без наддува:
Где: R= 287 Дж/кг K
2.4.3. Потери давления .
Потери давления вследствие газодинамического сопротивления на впуске определяется выражением для двигателей без наддува:
Где : - коэффициент затухания скорости движения заряда в минимальном сечении впускной системы;
- коэффициент газодинамического сопротивления впускной системы, отнесенный к наиболее узкому сечению.
2.4.4. Давление свежего заряда в конце пуска .
Давление свежего заряда в конце впуска определяется выражением для двигателей без наддува:
2.5.Коэффициент остаточных газов .
Коэффициент остаточных газов характеризует качество отчистки цилиндра от продуктов сгорания. С увеличением уменьшается количество свежего заряда, поступающего в цилиндр двигателя в процессе впуска. Коэффициент остаточных газов определяется для двигателей без наддува выражением:
Где: коэффициент дозарядки;
Таблица коэффициента остаточных газов.
С жидким топливом
2.6. Температура свежего заряда в конце впуска .
Температура свежего заряда в конце впуска определяется для двигателей без наддува выражением:
Величина зависит от температуры рабочего тела, коэффициента остаточных газов, степени подогрева заряда и в меньшей степени от температуры остаточных газов.
Таблица температуры свежего заряда в конце впуска .
С жидким топливом
2.7. Коэффициент наполнения .
Коэффициент наполнения или КПД наполнения определяется отношением действительного количества свежего заряда, поступившего в цилиндр, к тому количеству, которое могло бы поместиться в рабочем объеме цилиндра при условии, что температура и давление в нем равны температуре и давлению среды, из которой поступает свежий заряд.
Коэффициент наполнения определяется для двигателей без наддува выражением:
Из уравнений видно, что на величину коэффициента наполнения влияют давление ра и температура Та в конце впуска, подогрев заряда AT, коэффициент остаточных газов уост, температура Тг, а также степень сжатия е. Наибольшее влияние оказывает величина — или —. РоРп
Значения этих величин, как было показано выше, зависят от ряда факторов. При подготовке к производству новых образцов двигателей стремятся по возможности уменьшить отрицательное влияние этих факторов на наполнение двигателя. Тщательная обработка внутренней поверхности впускного трубопровода и рациональная его конструкция с наименьшим числом поворотов обеспечивают снижение сопротивлений во впускной системе; более совершенная организация выпуска отработавших газов способствует уменьшению количества остаточных газов; возможность регулирования обогрева впускного трубопровода позволяет в карбюраторных двигателях избежать чрезмерного подогрева свежего заряда.
Наполнение двигателя при постоянном числе оборотов и изменении нагрузки. Изменение нагрузки в карбюраторных двигателях при постоянном числе оборотов коленчатого вала достигается перемещением дроссельной заслонки, в результате этого уменьшается или увеличивается количество поступающей в цилиндр горючей смеси.
При снижении нагрузки дроссельную заслонку прикрывают, вследствие уменьшения проходного сечения гидравлические сопротивления во впускной системе возрастают, что приводит к понижению давления ра. Штриховой линией показана индикаторная диаграмма газообмена при прикрытой дроссельной заслонке. Из диаграммы видно, что в этом случае в процессе впуска давление в цилиндре понижается, вследствие чего коэффициент наполнения уменьшается.
Во впускной системе дизелей отсутствуют какие-либо устройства, изменяющие количество подаваемого в цилиндр воздуха, так как изменение нагрузки в дизеле достигается регулированием количества впрыскиваемого топлива. Следовательно, при постоянном числе оборотов коленчатого вала гидравлические сопротивления во впускной системе дизеля остаются неизменными.
На величину коэффициента наполнения в дизеле при изменении нагрузки влияет только подогрев воздуха.
При увеличении нагрузки из-за выделения большего количества теплоты повышается температура стенок цилиндра, днища поршня и головки цилиндров. В результате этого по мере увеличения нагрузки поступающий в цилиндр воздух подогревается больше, и коэффициент наполнения несколько снижается.
Наполнение двигателя при переменных числах оборотов. Как видно из уравнения , потери давления во впускной системе прямо пропорциональны квадрату скорости движения заряда.
При повышении числа оборотов двигателя скорость движения заряда во впускной системе увеличивается примерно пропорционально числу оборотов. В связи с этим растут соответственно гидравлические сопротивления, а давление ра понижается. Такая же картина наблюдается и в выпускной системе, где с повышением числа оборотов растет давление остаточных газов рг и увеличивается их количество.
При повышении скоростного режима подогрев заряда из-за сокращения времени соприкосновения его с горячими стенками уменьшается.
Как показали опыты, у большинства автомобильных двигателей подогрев по сравнению с возрастающими сопротивлениями на впуске и выпуске меньше влияет на г]у.
В результате совместного действия этих факторов после достижения скоростного режима, при котором при соответствующим образом подобранных фазах газораспределения гу имеет наибольшее значение, дальнейшее увеличение числа оборотов приводит к уменьшению коэффициента наполнения.
На рис. 48 показано изменение коэффициента наполнения карбюраторного двигателя и дизеля в зависимости от числа оборотов. Наибольшие коэффициенты наполнения rvУ обоих двигателей соответствуют определеннымчислам оборотов.
Снижение коэффициента наполнения и у при уменьшении числа оборотов объясняется усилением подогрева заряда вследствие увеличения промежутка времени, в течение которого он соприкасается со стенками, и несоответствием фаз газораспределения условиям газообмена при пониженном числе оборотов. Необходимо отметить, что при малых числах оборотов увеличивается утечка заряда через поршневые кольца (особенно у двигателей с большим износом поршневых колец и зеркала цилиндра).
Из рис. 48 видно, что коэффициент наполнения rjyпри полной нагрузке у дизеля (кривая 2) несколько выше, чем у карбюраторного двигателг (кривая 3) и меняется менее значительно в зависимости от скоростного режима. Это объясняется тем, что во впускной системе дизеля отсутствуют карбюратор и дроссельная заслонка,вследствиечегоГидравлическиесопротивления у него меньше.
У карбюраторного двигателя по мере прикрытия дроссельной заслонки из-за возрастающих сопротивлений коэффициент наполнения падает более резко (кривые 4 и 5). Такая зависимость коэффициента наполнения от числа оборотов при прикрытии дроссельной заслонки, как будет показано ниже, обеспечивает ограничение наибольшего числа оборотов при снижении нагрузки и
устойчивую работу двигателя при наименьшем числе оборотов холостого хода.
В дизеле из-за уменьшения подогрева воздуха при снижении нагрузки коэффициент наполнения rvрастет. Кривая 1 показывает изменение коэффициента наполнения дизеля при его работе на холостом ходу.
Влияние степени сжатия. При изменении степени сжатия меняются условия подогрева заряда в цилиндре двигателя, а также количество остаточных газов и их температура. Влияние отдельных факторов при этом взаимно компенсируется. Опыты показали, что коэффициент наполнения практически независит отстепенисжатия.
Влияние размеров цилиндра, отношения хода поршня к диаметру цилиндра и расположения клапанов. При больших диаметрах цилиндра можно разместить клапаны большего диаметра. Увеличение диаметра впускного клапана позволяет осуществить процесс впуска при меньшей скорости движения заряда, что приводит к снижению гидравлических потерь и повышению коэффициента наполнения.
В настоящее время большое распространение получают корот-коходные двигатели, в которых отношение хода поршня к диаметру цилиндра меньше единицы. Одним из преимуществ этих двигателей, имеющих сравнительно большой диаметр цилиндра, является возможность размещения в головке цилиндров клапанов большого диаметрапри верхнем их расположении.
На рис. 49 показаны конструктивные схемы впускных каналов карбюраторных двигателей и дизелей. Верхнее расположение клапанов и соответствующая форма впускных каналов обеспечивает плавный впуск свежего заряда. В этом случае гидравлические сопротивления снижаются и коэффициент наполнения увеличивается. Кроме того, при наличии впускных каналов специальной формы образуется направленное движение рабочей смеси в цилиндре, необходимое для лучшего протекания процесса смесеобразования и сгорания.
Влияние фаз газораспределения. Коэффициент наполнения зависит от продолжительности и момента открытия и закрытия впускных и выпускных органов, т. е. от фаз газораспределения.
Влияние фаз газораспределения на коэффициент наполнения не поддается расчету, и их выбор производится опытным путем. С учетом влияния фаз газораспределения коэффициент наполнения для четырехтактного двигателя можно подсчитать по уравнению
коэффициент дозарядки, учитывающий дополнительное количество заряда, поступающего при движении поршня от н. м. т. до момента закрытия впускного клапана (линия а4, рис. 42, б).
коэффициент продувки, учитывающий дополнительную очистку цилиндров в период перекрытия клапанов при нахождении поршня вблизи в. м. т.
Для четырехтактных двигателей с наддувом вместо Т0 и р0 в уравнения (192), (193) и (194) необходимо подставлять значения Тк и рк.
Выбранные опытным путем фазы газораспределения обеспечивают оптимальные условия по наполнению для некоторого интервала изменения скоростного режима двигателя. Это означает, что для автомобильных двигателей, работающих в широком диапазоне изменения чисел оборотов коленчатого вала, нельзя подобрать фазы газораспределения так, чтобы они были наилучшими для всех случаев. Число оборотов, при котором производят подбор фаз, выбирают в зависимости от требований, предъявляемых к двигателю при его эксплуатации.
Влияние колебательных явлений в трубопроводах. В трубопроводах автомобильных двигателей в процессе впуска и выпуска возникает колебательное движение газов, приводящее к образованию волн давления. Это явление можно использовать для увеличения массы поступающего в цилиндр заряда. Если, например, настроить выпускную систему так, чтобы к концу процесса выпуска в момент перекрытия клапанов в ней образовалось разрежение, то количество отработавших газов, вытекающих из цилиндра, увеличится, а уос?„ уменьшится. В результате этого в цилиндр двигателя поступит большее количество свежего заряда.
1. Давление и температура окружающей среды.Двигатель будет работать без наддува (с наддувам) согласно исходных данных, поэтому давление окружающей среды выбираем ро = 0,1Мн/м2 (кг/см2), а температуру — Т0 = 288°…300° К.
При работе двигателей с наддувом воздух поступает в цилиндр не из атмосферы, а из компрессора (нагнетателя), где он предварительно сжимается. В соответствии с этим давление и температура окружающей среды при расчете рабочего процесса двигателя с наддувом принимается равной давлению рк и температуре Тк воздуха на выходе из компрессора. В зависимости от степени наддува давление наддувочного воздуха принимается:
Температура воздуха после компрессора
где пк — показатель политропы сжатия воздуха в компрессоре (нагнетателе).
Из выражения следует, что температура воздуха после компрессора зависит от степени повышения давления в нагнетателе и показателя политропы сжатия.
Величину пк принимают по опытным данным в зависимости от типа наддувочного агрегата и степени охлаждения:
2. Давление остаточных газов.В цилиндре двигателя перед началом процесса наполнения всегда содержится некоторое количество остаточных газов, находящихся в объеме Vc камеры сгорания. Величина давления остаточных газов рrустанавливается в зависимости от числа и расположения клапанов, сопротивлений впускного и выпускного трактов, фаз газораспределения, характера наддува, быстроходности двигателя, нагрузки, систем охлаждения и других факторов.
Для автомобильных двигателей без наддува, а также с наддувом и выпуском в атмосферу
Большие значения рrпринимаются для высокооборотных двигателей. Для двигателей с наддувом и наличием газовой турбины на выпуске
3. Температура остаточных газов. В зависимости от типа двигателя, степени сжатия, числа оборотов, нагрузки и коэффициента избытка воздуха принимают значение температуры остаточных газов, которая для бензиновых двигателей при работе на номинальном режиме изменяется в пределах Тr=900-1100° К, для дизелей - Тr=700-900° К.
ПРОЦЕСС ВПУСКА
Плотность заряда на впуске
где В — удельная газовая постоянная. Для воздуха
где R = 8315 дж/кмоль град — универсальная газовая постоянная.
Потери давления на впуске.
При работе двигателя с наддувом значение ра приближается к рк, однако абсолютные значения сопротивлений во впускных органах возрастают.
Для четырехтактных двигателей с наддувом
4. Давление в конце впуска.Для двигателей с наддувом и без наддува.
или
5. Коэффициент остаточных газов.Величина коэффициента остаточных газов уrопределяет качество очистки цилиндров от продуктов сгорания. С увеличением уrуменьшается количество свежего заряда, которое может поступить в цилиндр двигателя в процессе впуска.
Коэффициент остаточных газов для четырехтактных двигателей:
При применении наддува величина коэффициента остаточных газов снижается.
12. Температура в конце впуска.Эту температуру Та с достаточной степенью точности определяют на основании уравнения баланса теплоты, составленного по линии впуска от точки r до точки а:
где — количество теплоты, внесенное свежим зарядом, с учетом подогрева заряда от стенок;
— количество теплоты, заключающееся в остаточных газах;
— количество теплоты, заключающееся в рабочей смеси.
Величина Та в основном зависит от температуры рабочего тела, коэффициента остаточных газов, степени подогрева заряда и в меньшей степени — от температуры остаточных газов.
У современных четырехтактных двигателей без наддува температура в конце впуска будет:
Коэффициент наполнения.
Для четырехтактных двигателей с учетом продувки и дозарядки цилиндра
Величина коэффициента наполнения в основном зависит от тактности двигателя, степени его быстроходности и совершенства системы газораспределения.
Значение коэффициента наполнения для сравнения:
ПРОЦЕСС СЖАТИЯ
Рис. 7. Номограмма для определения показателя адиабаты сжатия k1
2. Средний показатель политропы сжатия.Величина n1 устанавливается по опытным данным в зависимости от числа оборотов двигателя, степени сжатия, размеров цилиндра, материала поршня и цилиндра, теплообмена и других факторов. Однако, учитывая, что процесс сжатия протекает достаточно быстро (0,015-0,005 сек на номинальном режиме), суммарный теплообмен между рабочим телом и стенками цилиндра за процесс сжатия получается незначительным и величина п1 может быть оценена по среднему показателю адиабаты сжатия k1.
Учитывая быстроходность рассчитываемого двигателя, принимают
3. Давление и температура в конце процесса сжатияопределяются из уравнения политропы с постоянным показателем п1:
Для современных автомобильных и тракторных двигателей давление и температура в конце сжатия изменяются в пределах (для сравнения):
Более высокое давление остаточных газов Pr при постоянной температуре остаточных газов Tr=const, соответствует наличию в цилиндре большего количества остаточных газов. В этом случае при движении поршня от ВМТ на расширение остаточных газов затрачивается большая часть хода поршня и впуск начинается позже, следовательно, ηv уменьшается. Давление Pr оказывает влияние в раз меньше, чем Pa. Учитывая это, в некоторых конструкциях двигателей несколько уменьшают проходные сечения выпускных клапанов и увеличивают впускных, увеличивая тем самым ηv.
5.Подогрев заряда.
Рис. 15. Зависимость коэффициента наполнения от подогрева заряда.
1– дизель, 2 – карбюраторный двигатель
В дизеле топливо вводится и испаряется в конце сжатия, поэтому подогревать свежий заряд нецелесообразно. В таких ДВС необходимо стремиться к уменьшению Т за счет размещения впускных и выпускных каналов в диаметрально противоположных зонах, возможно большего охлаждения впускного трубопровода и его тепловой изоляции.
6.Частота вращения.
При изменении частоты вращения n в работе двигателя на качество наполнения влияет сопротивление во впускной системе, Т, наличие остаточных газов, фазы газораспределения. Фазы подбирают экспериментально с учетом достижения наибольшего коэффициента ηv на тех скоростных режимах, на которых необходимо получить максимальный момент или мощность в зависимости от назначения двигателя.
Рис. 16. Зависимость коэффициента наполнения от частоты вращения коленчатого вала (полная нагрузка):1 — четырехтактный дизель ЯМЗ-238: 2 — четырехтактный карбюраторный двигатель ЗИЛ-130
Зависимость
показывает, что с увеличением частоты вращения ηv возрастает, достигая наибольшего значения ηv max.При этой частоте вращения nопт ДВС имеет оптимальное значение фаз газораспределения. При уменьшении n по сравнению с ее значением, при котором ηv max, коэффициент наполнения снижается из-за несоответствия выбранных фаз данному скоростному режиму, уменьшения дозарядки и утечки заряда в конце впуска (при движении поршня от НМТ к ВМТ) обратно во впускную систему.
Повышение частоты вращения вызывает снижение ηv из-за отклонений фаз газораспределения от оптимального значения и увеличения сопротивления впускной системы, не смотря на снижение ΔТ и увеличения дозарядки цилиндра.
В дизеле при полной нагрузке ηv несколько выше, чем у карбюраторного двигателя, что обуславливается меньшими гидравлическими потерями на впуске.
Компрессия — это вульгаризм. Правильно — давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива — для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.
По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?
Компрессия и степень сжатия — одно и то же: сказка первая
Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.
«Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.
1 no copyright
Поднял компрессию — увеличил мощность: сказка вторая
Не совсем так. Компрессию можно поднять двумя способами — увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.
Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором — на 9%. Здорово!
А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, — на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2–3%, причем в зоне малых и средних оборотов. А на высоких — никакого эффекта.
Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, — стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.
Способ второй — уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.
Сделали. Для нового мотора — всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами — 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.
Компрессия резко выросла, а мощность — нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.
2 no copyright
Нет компрессии — сразу на капиталку: сказка третья
Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?
Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это — тема отдельной статьи.
Чем выше компрессия, тем лучше: сказка четвертая
Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.
Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.
Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.
3 no copyright
И совсем не сказка.
Так на что же влияет компрессия? На многое! Главное — на пусковые свойства мотора, особенно при низких температурах.
В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально — попадает туда в виде негорючих жидких капель.
Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.
Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.
Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой — наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» — дело в целом бесперспективное.
Читайте также: