Турбина вольво фш 12 схема
Популярный ликбез по устройству турбонаддува
Итак, для начала вкратце общие принципы “турбления турбы” и работы APC.
Пусть АРС нет (пока). Едем себе по рулежке, почти холостые, дроссель закрыт, турбинка еле шевелится, давления во впуске нет, тишина, сиди кури. Но как приходит время пульнуть, тут уж давим тапку в пол, после чего:
Компьютер впрыска (ECU Electronic Control Unit, он же “мозги”) по положению дросселя (хотя и не только) соображает про себя, а блин, оченна надо дровишек в котел подбросить и увеличивает длительность импульсов на форсунки впрыска (в механическом впрыске регулятор увеличивает давление топлива).
Т.к. дроссель открылся, в цилиндры помимо бОльшего количества чистейшего авиационного керосина к тому же задуло больше воздуха. Мотор закрутился чаще, выхлоп пошел сильнее, раскрутил турбу, она ожила и давай пихать воздух во впускной коллектор, что вызывает соответственно дальнейшее повышение давления в выпускном коллекторе, что дает еще больше во впуск, а оно еще больше в выпуск и т.д. Короче если это дело не остановить насильно (ибо тапку-то с педали мы не думаем снимать), мотору каюк. Накачаем цилиндры так, что клапана через капот вылетят. Тут-то wastegate девайс (клапан сброса давления, то биш) встает с шашкой наперевес и со словами вроде “а не фига так давить тута” пускает часть давления в обход турбы, сбрасывая таким образом давление во впуске до базового (basic boost pressure), что сразу на давлении выпуска сказывается, турбинка перестает раскручиваться ну и все обратно пошло. Сплошная механика, нет тут ни одного п-н-п перехода в помине, и об электронных мозгах и речи нет (это к тому, что в нашем случае компьютер впрыска вряд ли может быть причиной “нетурбления” и сама по себе замена компьютера на турбину вряд ли повлияет). Базовое давление наддува настраивается штоком с гайкой на wastegate и может быть измерено спец. манометром (по науке делается на ходу, а не на холостых, но об этом ниже). А если базовое давление низкое, то wastegate просто сразу все давление мимо сливает, турба отдыхает. Wastegate закреплен на турбине и похож на вакуумный корректор трамблера. Выходящий из него шток связан с перепускным клапаном.
Кроме того, рядом с турбиной расположен часто упоминаемый в качестве подозреваемого байпасный клапан (by-pass valve), который на самом деле защищает турбину от ударных воздействий при резком закрытии дросселя. Иными словами, дуем мы значит на всех парах, а тут откуда ни возьмись стройная лань выбегает наперерез. Животинку жалко, тут уж тапкой надо бить по тормозам, дроссель бросаем, не до него. Но турба-то раскручена. А куда гонимым турбиной парам деваться в герметичном впускном коллекторе? Некуда. Вот они и шарахаются лбом об закрытую дроссельную заслонку, отскакивают от нее и обратно начинают ломиться, нападают на крыльчатку турбины и давай душить ее обороты. Турба в шоке, а мотор от энтого дела начинает фыркать, трястись и отбрыкиваться. Супротив такого вреда by pass и изобрели в качестве запасного выхода для пара, так сказать. По уму байпас, глядя, что за дросселем разрежение появилось (т.е. гашетка прикрылась), сбрасывает излишнее давление наддува, предохраняя крыльчатку от ударных воздействий. Таким образом, исправный байпас работает только при сбросе газа и не влияет на динамику разгона.
Для элементарной проверки байпасного клапана отсоединяют от впускного коллектора вакуумную трубку, соединяющую клапан с задроссельным пространством, и подают в трубку разрежение. Если разрежение не удерживается, значит диафрагма клапана повреждена. Неисправный клапан вызывает дерганье при открытии дросселя и издает гудящий звук (недаром клапан еще называют hooter valve.
Теперь подключаем АРС (Automatic Performance Control). Система позволяет снять с мотора максимальный перфоманс (читай-мощность) для бензина различного качества (т.е. в зависимости от детонационной стойкости топлива) путем регулирования давления наддува. Другими словами APC повышает давление наддува до момента появления детонации топливной смеси в цилиндрах. Эта гадина имеет свои мозги (блок управления) и датчики (давления, детонации, максимального давления), а занимается тем, что дурит wastegate натурально. Пока детонации нет эта APC давление в обход wastegate пускает с помощью соленоидного клапана (в 900х расположен над радиатором, к нему идут три вакуумные трубки и два эл.провода). Ничего не подозревающий wastegate думает себе о своем, мечтает, шашку зачехлил, а во впуске на самом-то деле давление все нарастает, турба свистит як соловей, горизонт на капот наезжает. Тут максимальное давление наддува и наступает (тоже кстати измеряется, и если АРС в норме, а разница с базовым не велика, тогда уж только на саму турбину можно наезжать). Все в панике, что делать? Тут датчик детонации (работает как микрофон на впускном коллекторе) врывается с пеной у рта, документы на стол к блоку управления АРС шварк, напряжение генерит на контактах, я грит оглох уже от ударных волн. АРС деваться некуда, раз такая засада-я грит сматываюсь, и дурилку-соленоид закрывает. Ну тут wastegate опять очухался, с шашкой выбегает и давай давление гасить. Так они за максимальное давление и борются, обеспечивая перфоманс на должном уровне. Такие вот интриги внутри наших моторов разворачиваются.
Пневмосистема вольво fh12 схема
Компрессор 1 подает сжатый воздух через регулятор давления 2 в осушитель воздуха 3. Назначением автоматического регулятора является поддержание давления воздуха в пневмосистеме в заданных пределах, к примеру (7.2 – 8.1 бар). Осушитель удаляет из воздуха содержащаяся в нем влагу, которая выводится из системы через вентиляционный канал. Подготовленный воздух подводится к 4-х контурному защитному пневмоклапану 4, который препятствует снижению рабочего давления в тормозной системе при отказе в одном или нескольких контурах системы тормозов. Ресиверы (6 и 7) обеспечивают работу контуров первой и второй тормозной системы через тормозной кран 15. В контур 3 воздух поступает от ресивера 5 через автоматическую соединительную головку 11, кран управления тормозом прицепа 17, 2-х позиционный клапан (2-х ходовой), обратный клапан 13, кран включения стояночной тормозной системы 16 и ускорительный клапан 20 в камеру пружинного энергоаккумулятора пневмоцилиндра 19. Контур 4 предназначен для питания вспомогательных потребителей сжатого воздуха, например, моторного тормоза. В прицепную тормозную систему воздух подводится через соединительную головку 11 и шланг ресиверу. Затем, через магистральный воздушный фильтр 25 и тормозной кран прицепа 27 он поступает в ресивер 28 и далее к ускорительным клапанам ABS 38.
Рабочая тормозная пневмосистема
При открытии тормозного крана 15 через магнитный клапан АВ 5 39 воздух поступает в тормозную камеру 14 (передняя ось грузовика) и на автоматический регулятор тормозных усилий 18. Регулятор включается и направляет воздух в рабочую камеру пневмоцилиндров 19 через магнитный клапан 40. Давление в тормозных камерах, соответственно и усилие, необходимое для торможения, зависит от степени нажатия на педаль тормозного крана, а также от его загрузки автомобиля. При этом величина давления, регулируемая нагрузкой на грузовик, регулируется автоматическим регулятором тормозных усилий 18, который соединен с задней осью шарнирным соединением.
При загрузке и разгрузке автомобиля изменяется расстояние между рамой и осью грузовика. Таким же образом осуществляется управление давлением в системе тормозного привода.
Кроме автоматического регулятора тормозных усилий через магистраль управления приводится в действие клапан нулевой-полной нагрузки в тормозном кране грузовика. Так же и давление тормозной системе привода колес передней оси корректируется в зависимости от загрузки грузовика.
Управление краном управления тормозами прицепа 17 осуществляется обоими рабочими контурами системы тормозов. При этом, сам кран осуществляет подачу воздуха через соединительную головку 12 и шланг на тормозной кран прицепа 27. При этом, начинается поступление сжатого воздуха от ресивера 28 через тормозной кран прицепа, кран растормаживания прицепа 32, пневмоклапан соотношения давлений 33 к автоматическому регулятору тормозных сил 34, а также к ускорительному клапану АВ 5 37. Регулятор же тормозных сил 34 управляет Ускорительным клапаном.
Сжатый воздух поступает в тормозные пневматические камеры 29 передней оси автомобиля, а через регулятор тормозных сил 35 и при срабатывании ускорительных клапанов АВ 5 38 – к тормозным камерам 31. Давление в тормозной системе прицепа согласуется с давлением тормозной системы грузового автомобиля при помощи автоматических пневморегуляторов 34 и 35 тормозных сил и устанавливается таким, какое требуется для данной степени загрузки прицепа. Пневмоклапан 33 уменьшает величину давления на тормозных колодках для избегания блокировки колес передней оси в режиме притормаживания.
Ускорительные клапаны АВ 5 в прицепе и магнитные клапаны АВ 5 в грузовом автомобиле управляют (создание, поддержание и сброс) величиной давления в тормозных камерах и включаются с помощью электронных блоков АВ 5 (36 или 41). Это управление осуществляется независимо от давления, создаваемого тормозными кранами грузового автомобиля или прицепа.
В нерабочем состоянии (магниты обесточены) краны выполняют функцию ускорительных клапанов и служат только для быстрой подачи и сброса давления в тормозных камерах.
Стояночная тормозная пневмосистема
При изменении положения рычага тормозного крана с ручным управлением 16 полностью сбрасывается рабочее давление сжатого воздуха в пружинном энергоаккумуляторе пневмоцилиндра 19. В таком состоянии усилие на колесные тормозные механизмы, прилагается за счет сил упругости пружин пневмоцилиндров. Одновременно сбрасывается давление воздуха в магистрали на участке от тормозного крана 16 с ручным управлением до крана управления тормозом прицепа 17. При стоянке автопоезда удержание прицепа осуществляется путем подачи давления в управляющую магистраль. Так как, Директивы Совета Европейского Экономического Сообщества (ККЕС) включают требование, чтобы грузовой автопоезд (грузовой автомобиль и прицеп) мог удерживаться на месте только за счет тормозной системы автомобиля, то в тормозной системе прицепа можно сбросить давление переводом рычага тормозного крана с ручным управлением в «Положение контроля». Это позволяет проверить, отвечает ли стояночная тормозная система автопоезда требованиям ККЕО.
Вспомогательная тормозная система
При отказе рабочих тормозных контуров 1 и 2 автопоезда можно затормозить с помощью пружинных энергоаккумуляторов пневмоцилиндров 19. Усилие на торможение, необходимое для тормозных механизмов колес, создается, как уже указывалось в разделе «Стояночная тормозная система», за счет силы упругости предварительно сжатых пружин энергоаккумуляторов пневмоцилиндров 19. При этом, давление в пневмоцилиндрах сбрасывается не полностью, а только до уровня, необходимого для создания требуемого усилия торможения.
Торможение прицепа в автоматическом режиме (экстренное торможение)
В случае разрыва давление в магистрали мгновенно падает до атмосферного. В результате этого срабатывает тормозной кран 27 и начинается процесс экстренного торможения. При срабатывании рабочей тормозной системы встроенный в клапан управления тормозом прицепа 17, двухходовой двухпозиционный клапан перекрывает проходное сечение в направлении соединительной головки 11 магистрали снабжения сжатым воздухом. Таким образом, разрыв магистрали управления тормозной системы вызовет быстрое падение рабочего давления и в течение законодательно регламентированного времени (не более двух секунд) сработает тормозной кран прицепа 27. Начнется автоматическое торможение. При этом, обратный клапан 13 предотвращает случайное срабатывание стояночной тормозной системы при падении давления в магистрали подачи сжатого воздуха к тормозной системе прицепа.
Компоненты блока АВ 5
Как правило, в оборудование европейского грузовика входит: три контрольными лампы текущего контроля системы, реле, инфомодуль и розетка АВ5 (24В). После включения зажигания загорается контрольная лампа желтого цвета, если автомобиль с прицепом без системы АВ 5 или питающий кабель разорван. Контрольная лампа красного цвета гаснет, если автомобиль набрал скорость более семи кмч и блок АВ5 не обнаружил неисправности в системе.
Тормозная система Volvo FH
Топливная система VOLVO FH12
Принцип работы пневматической тормозной системы WABCO ABS
Тормозной механизм Volvo FH12. Ремонт
Пневматическая тормозная система
Коды неисправностей, поиск неисправностей, электрические схемы Volvo FH / FM. Том 3
Ремонт электрики,замена цилиндра горного тормоза на Вольво FH
Volvo FH-12. топливная система SCR AdBlue. (2)
Кран управления пневмоподвеской
Недавно фирма Volvo начала предлагать модернизированную чашку опоры, в которой вместо капроновых втулок использованы игольчатые подшипники. Однако касательно этого предложения у механиков фирмы снова возникло несколько замечаний. Во-первых, новую чашку опять же возможно установить на старое место только в сборе и стоит она уже около 9000 руб. Во-вторых, инженеры ввели в узел дополнительные гайки для центровки и затяжки подшипников, что усложняет конструкцию. В-третьих, выточка на торце вала, доставляющая столько хлопот, осталась без изменений. Другая сложность еще и в том, что из-за введения измененного узла запчасти на прежнюю, более простую и дешевую, чашку в Россию теперь поставляются только на заказ.
Грузовики оснащены шестицилиндровым 12-литровым турбодизелем. Рядный 24-клапанный мотор оснащен насос-форсунками с электронным управлением, а также фирменным вольвовским моторным тормозом VEB (Volvo Engine Brake). На части машин этот двигатель развивает 380 л.с., на других грузовиках мотор за счет изменений в программе управления выдает уже 420 «лошадей». В отношении рабочих характеристик претензий нет: моторы очень тяговиты, расход топлива умерен, шумы и вибрации незначительны.
Принцип же работы декомпрессионного моторного тормоза состоит в том, что тормозное усилие развивается на такте сжатия. Перед началом такта сжатия, когда поршень находится в нижней мертвой точке, на короткое время приоткрываются выпускные клапаны и в цилиндр попадают отработанные газы из выпускного коллектора, находящиеся там под высоким давлением из-за закрытой заслонки горного тормоза. Давление в цилиндре поднимается и в такте сжатия поршню приходится затрачивать дополнительную энергию для преодоления избыточного давления в цилиндре.
Также отметим особенность подшипников передних ступиц. Смазываются эти подшипники обычным моторным маслом, а сама пробка для контроля и заливки масла сделана из пластмассы. После нескольких процедур отворачивания/заворачивания уплотнительное резиновое кольцо на пробке уже не обеспечивает должной герметичности, так что из-под пробки начинает подтекать масло. Кроме этого, при откручивании у пробки часто ломается слабый пластмассовый бортик. Фирма Volvo учла это нарекание и теперь предлагает для своих грузовиков более надежные латунные пробки с шестигранной головкой под гаечный ключ. (Масло в передних ступицах не требует плановой замены и меняется только в случае ремонта узла. Пробки для контроля и заливки масла не предназначены для многократного использования, так как срок службы их соответствует сроку службы всего узла).
Пневмосистема шведского тягача также заслуживает отдельной главы. Начнем с того, что компрессор создает в основных ресиверах давление 12 ат, тогда как у грузовиков других марок более распространен вариант давления 8 ат. При подаче же воздуха в контуры тормозной системы специальные отсекающие клапаны понижают давление с 12 до 8 ат. Если в воздушной системе скапливается много влаги, эти клапаны могут выйти из строя (один новый клапан стоит $100). Кстати, момент прорыва давления можно увидеть по двум манометрам, которые показывают нормальное давление (8 ат) в контурах рабочей тормозной системы. В случае отказа вышеназванных клапанов стрелки этих манометров просто зашкаливает.
Заметим, что на панели приборов стоит еще один, третий манометр, показывающий максимальное давление в основных ресиверах. От ресиверов к манометру идет пластиковый шланг, который часто не выдерживает нагрузки и начинает «травить» воздух в месте соединения с датчиком давления. Воздух уходит так, что при выключенном двигателе давление в воздушной системе падает на глазах. Теоретически соединение шланг/манометр неразборное, так что старый датчик давления просто откусывается от шланга и заменяется новым манометром. Но выкладывать около 4700 руб. за такую детальку рука не поднимается, поэтому на фирме приспособились этот узел разбирать и чинить.
Двухцилиндровый воздушный компрессор со временем «заболевает» течью масла из-под прокладки головки блока и течью охлаждающей жидкости. Для устранения неполадки требуются два ремкомплекта прокладок. Первый, устраняющий течь масла, стоит около 4000 руб. Второй комплект, устраняющий течь охлаждающей жидкости, стоит уже $300. Дороговизна последнего комплекта объясняется тем, что текущая прокладка стоит внутри пакета с клапанами и такой «бутерброд» меняется целиком.
Еще одна неприятность в том, что в случае проблем с прокладками компрессор начинает попутно «гнать» масло и охлаждающую жидкость в воздушную систему. Это видно при сливе конденсата, когда из ресиверов идет вода вперемежку с маслом и охлаждающей жидкостью. Если такую водно-масляную суспензию не сливать, она начинает циркулировать по всей системе, попутно выводя из строя главный тормозной кран под педалью, регулятор тормозных сил, уровня пневмоподвески и так далее.
Рекомендация здесь одна: следить за компрессором, вовремя делать ему профилактический ремонт, а также регулярно сливать конденсат из ресиверов, что не только является хорошей профилактикой, но и позволит вовремя заметить неисправности. (Золотые слова).
Схема подвески традиционна: рессоры спереди, пневмобаллоны сзади плюс стабилизаторы поперечной устойчивости спереди и сзади. Со стабилизаторами поперечной устойчивости наблюдается следующая ситуация. Жесткие втулки, бывает, начинают «выедать» металл на самой штанге стабилизатора. В итоге получается люфт. Установка новой втулки в этом случае помогает ненадолго и менять ее приходится уже через три месяца. Комплект из четырех задних втулок стоит около 2500 руб. (При своевременной замене втулок «выедания» металла не происходит. Необходимо следить за износом втулок).
Резьбовые втулки рессор согласно требованиям производителя необходимо смазывать с учетом условий эксплуатации (см. выше). Если забыть это сделать или если из-за забитых пресс-масленок смазка не доходит до «места назначения», узел начинает работать «всухую», усиленно изнашиваясь. К сожалению, на фирме у одной машины этот процесс запустили так, что из-за большого зазора в изношенной втулке передний мост начал «гулять».
От продольных перемещений задний мост удерживается реактивными тягами. Верхняя треугольная тяга имеет резинометаллический шарнир, установленный на картере моста. В принципе узел довольно надежен, но на наших дорогах нередко выходит из строя из-за качества дорог и перегруза автопоезда. Причем на машине, стоящей на ровной поверхности, дефект иногда визуально незаметен. Чтобы увидеть дефект, задний мост надо поднять либо опустить. Первый шарнир на фирме заменили при пробеге машины в 210 тыс. км. Запчасть из Германии стоит 2000 руб., оригинал дороже в два раза. Приходится брать то, что подешевле.
Редакция благодарит фирму «ИнтертрансФорд», и российское представительство Volvo Trucks за помощь в подготовке материала.Александр ЕВДОКИМОВ
Volvo Impact 2016.
В дилерской базе по ремонту и техническому обслуживанию грузовиков и автобусов Volvo Impact представлены: каталог запчастей грузовых автомобилей Volvo, руководства по ремонту, обслуживанию, диагностике, спецификации, сервисные бюллетени, нормочасы, расшифровка диагностических кодов неисправностей и инструмент для грузовиков и автобусов Volvo для европейского рынка.
- Издательство: Volvo
- Актуальность: 06/2016
- Система: Windows
- Интерфейс: Многоязычный (русский присутствует)
- Формат: ISZ
- Размер: 31,1 Gb
Volvo Impact 2018.
В дилерской базе по ремонту и техническому обслуживанию грузовиков и автобусов Volvo Impact представлены: каталог запчастей грузовых автомобилей Volvo, руководства по ремонту, обслуживанию, диагностике, спецификации, сервисные бюллетени, нормочасы, расшифровка диагностических кодов неисправностей и инструмент для грузовиков и автобусов Volvo для европейского и американского рынков. Отсутствуют модели старше 2006 года выпуска (они есть в Volvo Impact 2016).
- Издательство: Volvo
- Актуальность: 11/2018
- Система: Windows
- Интерфейс: Многоязычный (русский присутствует)
- Формат: ISO
- Размер: 57,4 Gb
Wiring Diagram Volvo FH12/FH16.
Схемы на английском языке электрооборудования грузовых автомобилей Volvo FH12/FH16 с левым рулем.
Wiring Diagram Volvo FM.
Схемы на английском языке электрооборудования грузовых автомобилей Volvo FM.
Грузовые автомобили Volvo F12 с 1979 по 1987 год выпуска.
Руководство по ремонту грузовых автомобилей Volvo F12 1979-1987 годов выпуска.
Грузовые автомобили Volvo FH12 модели выпуска с 1993 по 2005 год.
Руководство по ремонту двигателей D12A/D12C/D12D грузовых автомобилей Volvo FH12 1993-2005 годов выпуска.
Грузовые автомобили Volvo FE/FL с 2006 г.
Руководство по техническому обслуживанию и ремонту грузовых автомобилей Volvo FE/FL с 2006 года выпуска.
Грузовые автомобили Volvo FH12.
Руководство по эксплуатации, техническому обслуживанию и ремонту + каталог запчастей грузовых автомобилей Volvo FH12.
Грузовые автомобили Volvo FH12 1993-2005.
Руководство по техническому обслуживанию и ремонту грузовых автомобилей Volvo FH12 1993-2005 годов выпуска.
Грузовые автомобили Volvo FM/FH. Том 1.
Руководство по техническому обслуживанию и ремонту грузовых автомобилей Volvo FH и Volvo FM с 9- и 13-литровыми двигателями.
Грузовые автомобили Volvo FM/FH. Том 2.
Руководство по ремонту грузовых автомобилей Volvo FH и Volvo FM с 9- и 13-литровыми двигателями.
Грузовые автомобили Volvo FM/FH. Том 3.
Руководство по ремонту грузовых автомобилей Volvo FH и Volvo FM до 2005 года выпуска.
Грузовые автомобили Volvo VN/VHD 2002-2007 г.
Руководство по эксплуатации, техническому обслуживанию и ремонту грузовых автомобилей Volvo VN/VHD 2002-2007 годов выпуска.
Грузовые автомобили Volvo VNL/VNM 1996-2002 г.
Руководство по эксплуатации, техническому обслуживанию и ремонту грузовых автомобилей Volvo VNL/VNM 1996-2002 годов выпуска.
Руководство по обслуживанию и ремонту Volvo VN/VHD 1996-2002 г.
Мультимедийное руководство на английском языке по техническому обслуживанию и ремонту грузовых автомобилей Volvo VN/VHD 1996-2002 годов выпуска.
Руководство по обслуживанию и ремонту Volvo VN/VHD 2002-2004 г.
Мультимедийное руководство на английском языке по техническому обслуживанию и ремонту грузовых автомобилей Volvo VN/VHD 2002-2004 годов выпуска.
Руководство по ремонту Volvo F16/TF16.
Руководство по ремонту грузовых автомобилей Volvo F16/TF16.
Руководство по ремонту Volvo FM9.
Руководство по ремонту грузовых автомобилей Volvo FM9.
Руководство по ремонту и эксплуатации Volvo FH с 2012 г. Том 1.
Руководство по ремонту эксплуатации и ремонту грузовых автомобилей Volvo FH с 2012 года выпуска с дизельными двигателями объемом 12,8/16,1 л.
Руководство по ремонту и эксплуатации Volvo FH с 2012 г. Том 2.
Руководство по ремонту эксплуатации и ремонту грузовых автомобилей Volvo FH с 2012 года выпуска с дизельными двигателями объемом 12,8/16,1 л.
Руководство по эксплуатации, ремонту и ТО Volvo FE/FL/FL6 с 2000 г.
Руководство по техническому обслуживанию и ремонту грузовых автомобилей Volvo FE/FL/FL6 с 2000 года выпуска.
Руководство по эксплуатации, ремонту и ТО Volvo FH с 2002 г.
Руководство по эксплуатации, техническому обслуживанию и ремонту грузовых автомобилей Volvo FH с 2002 года выпуска.
Руководство по эксплуатации, ремонту и ТО Volvo FM с 2002 г.
Руководство по эксплуатации, техническому обслуживанию и ремонту грузовых автомобилей Volvo FM с 2002 года выпуска.
Схемы электрооборудования Volvo B 12.
Схемы на немецком языке электрооборудования автобусов Volvo B 12.
Техническое обслуживание Volvo AC/VN/WG/WX.
Руководство по техническому обслуживанию грузовых автомобилей Volvo серий AC/VN/WG/WX.
Устройство и работа двигателя Volvo D9A.
Руководство на испанском языке с описанием конструкции двигателя модели D9A грузовых автомобилей Volvo FM.
Эксплуатация и обслуживание Volvo VNL/VNM.
Руководство по эксплуатации и техническому обслуживанию грузовых автомобилей Volvo VNL/VNM.
Эксплуатация и ремонт Volvo FL6.
Руководство по эксплуатации и ремонту грузовых автомобилей Volvo FL6
Эксплуатация и ТО Volvo B 10 M 1986-1992 г.
Руководство по эксплуатации и техническому обслуживанию автобусов Volvo B 10 M 1986-1992 годов выпуска.
Эксплуатация и ТО Volvo FH/FM.
Руководство по эксплуатации и техническому обслуживанию грузовых автомобилей Volvo FH/FM.
Читайте также: