Температура сгорания бензина и газа в двигателе внутреннего сгорания
В ходе прочтения я ужаснулся тем заблуждениям и/или неточностям, которые были высказаны в комментариях. Так как я давно уже занимаюсь развенчанием подобных заблуждений на профильных форумах, у меня накопилось прилично материала по этой тематике. Попробую выложить их тут – авось, кому-то да пригодится. Ни одно из моих утверждений не является голословным.
Наслушется народ таких вот мифов, и начинается подсчет: вот на бензе у меня был расход 10, на газе – 12, то естьвырос на 20% — почему так много? Вот у чувака на такой же машине с таким же ГБО расход газа вообще снизился – до 9л на сотню. Да и установщики чесали что будет не более чем на 10% больше… Что-то тут не так!
На самом деле, все просто. Принцип работы двигателя при переходе на газ ни капельки не изменился. Это все так же тепловой двигатель, который работает по циклу Отто, превращая тепловую энергию от сгорания топлива в механическую работу по перемещеню автомобиля из точки А в точку Б.
Пропан:
Плотность жидкой фазы = 0.51 кг/л
Удельная теплота сгорания = 48 МДж/кг
Теплота сгорания одного литра = 0.51 * 48 = 24.48 Мдж
Бутан:
Плотность жидкой фазы = 0.58 кг/л
Удельная теплота сгорания = 45.8 МДж/кг
Теплота сгорания одного литра = 0.58 * 45.8 = 26.564 Мдж
Бензин:
Плотность = 0.7кг/л
Удельная теплота сгорания = 46 МДж/кг
Теплота сгорания одного литра = 0.7 * 46 = 32.2 Мдж
Кол-во литров бутана дла замещения литра бензина = 32.2 Мдж / 26.564 Мдж = 1.21
Кол-во литров пропана дла замещения литра бензина = 32.2 Мдж / 24.48 Мдж = 1.31
Расход бензина может отсутствовать только у владельцев ГБО первого-второго поколения (эжекторное ГБО. Можно завестись на газе. Не рекомендуется, т.к. это гробит редуктор) и пятого-шестого (впрыск жидкой фазы, редуктора вообще нет). Наиболее популярное инжекторное ГБО4 поколения (впрыск паровой фазы во впускной коллектор) требует прогрева двигателя до температуры 35-55 градусов. Естественно, прогрев происходит при работе двигателя на бензине.
Вот как схематически может выглядеть рядовая поездка с точки зрения расхода двух топлив:
Удельный вес воздуха = 0.0012041 кг/л при 20 градусах
Удельный вес пропана = 0.002019 кг/л
Удельный вес бутана = 0.002703 кг/л
Удельный вес паров бензина — увы, табличных данных не нашел. Если принять среднюю длину углеродной цепочки 8 атомов углерода, то удельный вес паров можно принять за 0.0045 кг/л
Стехиометрическое соотношение воздух/пропан = 15.6
Стехиометрическое соотношение воздух/бутан = 15.3
Стехиометрическое соотношение воздух/бензин = 14.7
рассчитываем вес горючего вещества
V = m1/r1 + m2/r2 ; V — объем смеси газов, m1 масса воздуха, m2 масса горючего, r1 плотность воздуха, r2 плотность горючего
m1 = S*m2 ; S — стехиометрическе соотношение
V = S*m2/r1 + m2/r2
V = m2 * (S/r1 + 1/r2)
m2 = V / (S/r1 + 1/r2)
Или в цифрах:
вес порции пропана = 0.4 / (15.6 / 0.0012041 + 1/0.002019 ) = 0.0000297375 кг
вес порции бутана = 0.4 / (15.3 / 0.0012041 + 1/0.002703 ) = 0.00003058911 кг
вес порции бензина = 0.4 / (14.7 / 0.0012041 + 1/0.0045 ) = 0.00003217888 кг
И, наконец, искомое — теплота вспышки одной порции топливовоздушной смеси:
пропан = 0.0000297375 кг * 48 МДж/кг = 1427.4 Дж
бутан = 0.00003058911 кг * 45.8 МДж/кг = 1401 Дж
бензин = 0.00003217888 * 46 МДж/кг = 1480.2 Дж
Начнем с самого первого мифа. На самом деле, в одинаковых условиях газ горит примерно на 5% быстрее, чем бензин. Да-да, именно так. Но речь идет именно об одинаковых условиях! А самое главное условие, влияющее на скорость горения топлива — это коэффициент избытка воздуха (λ). Иными словами, если сравнивать горение бензина при λ = 0.86 (богатая смесь, наиболее бысстрое горение) и горение газа при α = 1,25 (бедная смесь, наиболее медленное горение), то миф превращается в чистую правду.
Из буржуинских исследований я вытянул два вот таких графика:
Так что же, прошивка под газ либо вариатор УОЗ – это тоже гербалайф?
Оказывается, нет. Только дело тут вовсе не в скорости горения газа, а в другой его важнейшей особенности – детонационной стойкости.
Ни для кого не секрет, что даже пропан-бутан имеет октановое число под 100 (метан – около 120). Это дает возможность использовать не тот угол опережения зажигания, который с завода и который в некоторых режимах занижен из-за риска детонации, а теоретически оптимальный. Естественно, это приводит к увеличению КПД, и, как следствие, к увеличению тяги и одновременному уменьшению расхода. Да-да, это вовсе не сказки!
Вот упрощенная схема, которая более наглядно иллюстрирует этот эффект:
А вот на газе (двигатель, обороты, свеча и зазор – те же):
Сегодня у меня все. Как видите, я касался только тех заблуждений в сфере ГБО, которые касаются только технической части. Я специально оставил в стороне вопросы рентабельности установки ГБО, безопасности эксплуатации газированных автомобилей, вопроса престижа (точнее, антипрестижа) владения авто с ГБО и т.д.
На всякий случай подчеркну еще раз – я не профессиональный установщик ГБО. То есть, я не зарабатываю себе этим на жизнь. Пост не является рекламой, антирекламой и т.д. – я просто хочу бороться с ложными убеждениями.
Всем добра!
Считается, что ключевым моментом при переводе автомобиля на газ является экономический аспект. Что вполне объяснимо, поскольку газ практически в два раза дешевле высокооктанового бензина и его, что очень важно, можно использовать даже в самых современных автомобилях.
Что касается нашей страны, то последний принятый у нас техрегламент заставляет автовладельцев регистрировать газовое оборудование в машине, что несколько сдерживает рост газифицированного автопарка. Однако, с другой стороны, российское правительство с лета нынешнего года запустило государственную программу льготного субсидирования при переводе бензиновых авто на метан.
Напомним, что в ходе реализации этой программы, владельцу машины вроде как обязаны компенсировать до 90% стоимости установленного газового оборудования. Правда, программа действует не во всех регионах, да и получение самой компенсации потребует определенных моральных и временных затрат, связанных с хождением по инстанциям.
Но, все равно, считают эксперты, этого явно недостаточно. И потом, к сожалению, ценники на заводские версии не радуют. Так, например, Vesta с фирменным ГБО стоит почти на 180 000 рублей дороже бензинового аналога.
Хитрости при замене моторного масла, о которых мало, кто знает
Как быстрее всего зарядить сильно разряженный аккумулятор в машине
Еще одно важное преимущество газа — экологичность. Сгорание газа оказывается значительно более чистым, значит и двигатель всегда в чистоте. При этом износ его деталей снижается раза в полтора и, стало быть, ресурс увеличивается примерно на столько же. Уменьшается нагрузка на катализатор, чище выхлоп и, соответственно, воздух на улицах. В общем, плюсы в части экологии и экономии значительные, однако достигнуты они могут быть лишь при соблюдении ряда условий.
Первое — это повышенный контроль за температурой движка. Дело в том, что газ при сгорании выделяет несколько меньше энергии, чем бензин. Значит, его расход будет на 7—10% больше, при тех же нагрузках. А вот температура в цилиндрах при сгорании газа выше, чем при горении бензина.
Второй момент — выбор моторного масла. Долгое время считалось, что двигатели, переоборудованные под газ, не нуждаются в специальных маслах. Но современный очищенный газ содержит малое количество серы, влияющей на скорость старения моторного масла. А стало быть, нет необходимости в нейтрализации большого количества агрессивных веществ, образующихся в процессе сгорания.
Для таких случаев подходят масла с низкой щелочностью, а бонусом является то, что низкощелочные масла обладают еще и малой зольностью. То есть дают малое количество абразивных частиц при сгорании и дополнительно уменьшают износ двигателя.
Готовим машину к зиме: какие расходники надо поменять в первую очередь и не разориться
Следующий момент — бензин. Именно на нем производится запуск и прогрев двигателя, после чего ГБО переключается на газ. Иначе говоря, бензин расходуется крайне медленно, отчего он застаивается в форсунках, топливной рампе и в баке. В итоге там создаются условия для термической деградации горючего с образованием смол и шламов, а в баке и вовсе может произойти расслоение топлива.
Чтобы не допускать этого, следует регулярно пользоваться очистителями системы впрыска, а в бак добавлять присадку, препятствующую расслоению горючего. Такими средствами, например, могут служить очиститель инжектора Langzeit Injection Reiniger, а также стабилизатор бензина от уже упомянутой выше Liqui Moly.
1. Горит бензин или его пары?
Горит смесь паров бензина и кислорода, содержащегося в воздухе. Поэтому если вы слышали байку о том, как кто-то тушил в полной канистре бензина сигаретные бычки — это не байка, а вполне себе правда. Хотя это очень опасно и делать так мы не советуем. Опасно потому, что горючие пары у поверхности бензина есть всегда, если только он не охлажден до температуры ниже –40°C.
Концентрация бензина в воздухе, при которой смесь становится пожароопасной, имеет четкое минимальное и максимальное значение: от 0,8% до 8,0%. Если бензина в воздухе меньше, то смесь не загорится из-за нехватки топлива. Если больше, то тоже не загорится, но уже из-за нехватки достаточного для поддержания реакции количества кислорода.
Важно не путать пары и ничтожно малые капли бензина. Капля — это тоже жидкость, просто с точки зрения человека в крохотном объеме. Если пшикнуть из баллончика на пламя чем-нибудь горючим, то гореть будет не аэрозоль из мельчайших капель вещества, а испарения, которые окружают каждую каплю.
Красное кольцо — это и есть место горения, где пары бензина (1) соединяются с кислородом (2). А сама капля бензина (зеленый круг) не горит, а лишь испускает пары. Источник (здесь и далее, если не указано иное): NGK Spark Plugs
Горение паров бензина — это сложный окислительный процесс, при котором молекулы бензина распадаются, углерод и водород из топлива соединяются с кислородом из воздуха под действием высокой температуры, происходит выделение энергии. При полном сгорании бензин разлагается на воду (H2O) и монооксид углерода (CO). Это в теории, на деле всё сложнее, а сопутствующих соединений образуется больше из-за того, что воздух состоит из целого коктейля элементов, а не одного кислорода.
К сожалению, таких видео в интернете масса. А всё из-за непонимания того, что горят именно пары бензина, которые при заправке буквально струёй вырываются из горловины бака.
Всё описанное, заметим, справедливо для горения бензина на открытом воздухе. В двигателе внутреннего сгорание дело происходит иначе.
2. Что происходит с бензином в двигателе внутреннего сгорания
Сам по себе бензин горит очень медленно — это можно увидеть, поджигая маленькую лужицу топлива на улице. Чтобы ускорить его горение и, соответственно, выработку энергии, необходимо увеличить давление смеси. Двигатель внутреннего сгорания в начале каждого такта открывает клапан, в цилиндр впрыскивается смесь бензина и воздуха в нужной пропорции, а затем поршень, поднимаясь вверх, сжимает смесь, увеличивая её давление. Разницу в объеме при поднятом и опущенном поршне называют степенью сжатия, и в бензиновых ДВС она составляет 8–14:1. То есть поршень сжимает объем топливо-воздушной смеси в 8–14 раз.
Отношение между максимальным объёмом V1 и минимальным объёмом V2 зовётся степенью сжатия
Когда поршень находится в крайнем положении и смесь сжата максимально, свеча зажигания производит искру с температурой 10 000 °C. Если компрессия (давление) ниже необходимой, упадет мощность двигателя. Если выше, начнется детонация (об этом дальше).
От искры зажигания топливовоздушная смесь загорается, пламя распространяется от свечи зажигания по всему объёму цилиндра. Дальше происходят химические реакции, выделение газов и движение поршня вниз — с этим процессом автомобилисты хорошо знакомы.
Итак, для горения бензина необходим воздух. Сколько? Идеальное соотношение составляет 1:14,7, т. е. для полного сжигания 1 кг бензина необходимо 14,7 кг воздуха. Бензино-воздушная смесь с таким идеальным соотношением называется стехиометрической. В двигателях внутреннего сгорания это соотношение может быть чуточку больше или меньше. В таких случаях топливо-воздушную смесь называют богатой или бедной в зависимости от количества паров бензина в ней. Богатая смесь даст большую мощность двигателю, зато бедная обеспечит экономичность. За регулировку обогащения смеси топливом отвечает лямбда-зонд, анализирующий количество кислорода в выхлопных газах.
3. Что может быть не так с горением бензина в двигателе
Давление в цилиндре и высокая температура искры — это еще не гарантия, что бензин в двигателе будет загораться в нужный момент и сгорать с нужной скоростью. Огромную роль в этом процессе играют свечи и катушка зажигания.
Первая ситуация, когда ДВС работает неправильно, — детонация. Детонация есть самопроизвольное возгорание топливовоздушной смеси взрывного характера вследствие превышения некоего порога сжатия и температуры, происходящее после возникновения искры зажигания (это важный момент). В этом случае, пока топливовоздушная смесь начинает плавно гореть от свечи, где-то в другой точке объема самопроизвольно возникает еще один очаг возгорания. Фронт пламени при детонации в цилиндре распространяется со скоростью в 100 раз выше, чем при нормальной работе двигателя. Взрывная волна оказывает сильнейшую ударную нагрузку на цилиндр и буквально выгрызает в поршне каверны. Хуже того, микровзрывы разрушают свечу и стенки цилиндра и гнут шатуны. Как это происходит, можно посмотреть в нашем видео.
Детонация, помимо прочего, возникает из-за использования бензина с октановым числом ниже допустимого в конкретном двигателе — в таком топливе стойкость к детонации ниже, чем у выскооктанового бензина (об этом ниже). Также бывает виноват перегретый двигатель или высокая нагрузка при низких оборотах.
Есть ещё одно неприятное явление, по последствиям похожее на детонацию, — калильное зажигание. Во время него смесь в цилиндре воспламеняется ещё до появления искры свечи, например, от перегретого нагара на клапанах или поврежденной и тоже перегревшейся из-за неправильной установки свечи. Мы уже писали отдельный пост о калильном зажигании — обратите внимание. В лучшем случае оно приведет к сгоранию электрода свечи или повреждению её изолятора, а в худшем — к прогоранию поршней, поршневых колец и маслосъёмных колпачков, то есть к серьёзному ремонту двигателя.
Результат длительной езды с детонацией — расплавление поршня и колец. Источник: MrAliev / DRIVE2
Расплавленный нейтрализатор. Это ещё ничего, в особо тяжелых случаях расплав закупоривает почти все соты. Источник: HelpAutoKiev / DRIVE2
Свеча с иридиевым сердечником (слева; Laser Iridium) и с никелевым (справа) — обе NGK Spark Plugs
Платиновые напайки на электродах создают стойкость к коррозии и эрозии. То есть зазор между электродами практически не будет меняться в течение срока службы свечи, а значит, значительно снижается шанс возникновения пропусков зажигания. Платиновые и иридиевые свечи не вечные, но проходят они в среднем в 3-4 раза больше обычных (порядка 100 тыс. км), после чего требуют замены. При небольших ежегодных пробегах есть шанс, что после покупки нового автомобиля с иридиевыми свечами вы вообще их никогда не поменяете, а скорее продадите машину.
Свеча NGK с едва заметными светлыми платиновыми напайками на концах электродов — такого количества драгметалла вполне достаточно. Источник: mikelz / DRIVE2
4. Почему важно октановое число и можно ли на нём экономить
Что фактически значит число 95 в марке автомобильного бензина? Оно значит, что топливовоздушная смесь конкретного бензина имеет стойкость к детонации такую же, как смесь из 95% изооктана и 5% гептана. Изооктан — углеводород, принятый за образец стойкости к детонации (октановое число 100), а гептан, наоборот — образец склонности к детонации (октановое число 0). На их комбинировании и построена октановая шкала.
Тогда что такое бензин с октановым числом выше 100, если 100-процентный изооктан является эталоном? Это бензин, который с помощью присадок сделали более стойким к детонации, чем чистый изооктан; такой используется в гоночных автомобилях (у авиационных бензинов октановое число тоже может быть выше 100, но у них своя шкала детонационной стойкости). Главным образом этого позволяет достичь добавление тетраэтилсвинца, однако применяются также эфиры МТБЭ и ЭТБЭ, толуол и проч. Интересно, что они во-первых, делают топливо дороже, а во-вторых, в большинстве своём вредны для окружающей среды и человека. Так, тетраэтилсвинец до конца XX века добавляли в весь автомобильный бензин для повышения его октанового числа, но затем присадка попала под запрет из-за токсичности (а бензин стал неэтилированным).
Повторим же: чем выше октановое число, тем более бензин стоек к детонации. В форсированных двигателях с высокой степенью сжатия низкооктановый бензин начинает детонировать во время зажигания со всеми описанными выше последствиями для двигателя. Проще говоря, если у вас современный немецкий турбомотор и к нему приложена рекомендация заправляться Аи-98 (а в случае острой необходимости Аи-95), то заправка Аи-92 очень скоро приведёт к детонации и порче очень дорогого двигателя.
А что насчёт заправки высокооктановым топливом атмосферного движка, настроенного под Аи-92 или даже ниже? Никакой детонации, естественно, не будет — будет другая проблема. Высокооктановое топливо горит медленнее, чем низкооктановое. Какой-нибудь Аи-98 просто не успеет полностью сгореть в цилиндре, и огонь пройдёт сквозь выпускной клапан в коллектор, пожжёт катализатор, а на высоких оборотах доберется и до глушителя.
5. Безнин невозможно поджечь сигаретой
А теперь немного о несерёзном. Трюк с гашением в ведре бензина работает только с сигаретой, провернуть тот же фокус с горящей спичкой не получится. Вернее, фокус получится, но совсем другой. Если оставить сигарету в покое и не затягиваться, она будет не гореть, а тлеть без образования газофазного пламени (то есть огня), необходимого для воспламенения бензина. Чисто теоретически, неудачно брошенная в лужу бензина сигара может испустить достаточно искр, чтобы поджечь пары топлива, — это единственное оправдание популярному киноходу с поджиганием бензина таким образом.
Коротко и наглядно — бензин сигаретным бычком не зажечь. Но не повторяйте это дома!
6. Бензобак в автомобиле так просто не взрывается
Автомобиль, как на этом фото, может загореться даже во время стоянки — например, из-за короткого замыкания или даже поджога, — и со временем взорваться, но сначала он порядочно прогорит. Источник: Les Chatfield / Flickr
Разберём и физику попадания пули в бензобак. Допустим, что по сюжету фильма в бензобак авто попадает пуля, и происходит грандиозный взрыв — очень затасканный киноштамп, которым до сих пор пользуются сценаристы посредственных боевиков. С точки зрения зрителя это выглядит логично: пуля, пробивая бензобак, вызывает искру, от которой десятки литров топлива мгновенно детонируют, превращая машину героя в огненный факел.
В реальности всё будет совсем не так. Предположим, что пуля попадает в наполовину наполненный бензобак. Опустим, что в современных машинах их делают из пластика, а потому никакой искры там в принципе быть не может. Так вот, в баке есть необходимые нам пары бензина, и даже искра откуда-то появилась, например, от зажигательного патрона. Первое попадание, разлетающиеся искры и… ничего. А всё потому, что топливовоздушная смесь в бензобаке слишком обогащенная парами бензина, кислорода для возгорания в ней недостаточно. Затем через образовавшиеся отверстия начнет вытекать бензин, разливаясь по дороге и корпусу авто. И вот теперь с некоторой вероятностью от выстрела можно будет поджечь топливо. Только снаружи, всё ещё не в бензобаке. И даже в этом случае начнется медленное горение, но никак не взрыв.
Демонстрация того, что как в канистру с бензином не стреляй, а взрыва не выйдет:
Но хватит о кино и мифах — возвращаемся к серьёзному разговору.
7. Бензин при аварии может загореться
Правда, и тут обычно происходит не взрыв, а пожар на большой площади разлившегося по дороге бензина. Когда содержимое топливного бака за пару секунд выливается на дорожное полотно и загорается, создается ощущение взрыва, но всё же в большинстве случаев это не взрыв, а пожар с последовательным распространением огня.
Если не считать автомобили с некачественным ГБО, по-настоящему эффектно взрываются только… электромобили :
В тяжелых ДТП, когда автомобиль буквально разрывает на части, нарушается целостность топливной системы, а то и самого бензобака, бензин быстро вытекает наружу и попадает на раскаленные узлы автомобиля. Далее происходит самовоспламенение испаряющегося топлива и начинается сильный пожар. А уж если после аварии и разлития горючего что-то под капотом заискрит…
8. Дизельное топливо при аварии горит гораздо хуже
При аварии дизельное топливо точно так же может растечься по раскаленным деталям автомобиля и по дороге, но воспламениться даже от искр ему не позволит химия. Дизель относится к тяжелым видам топлива с низкой летучестью, он имеет длинную углеродную цепочку, потому испаряется очень неохотно. Бензин, напротив, очень летуч — уже при температуре –40°C он начинается испаряться достаточно для того, чтобы загореться. Этот порог называется температурой вспышки. Даже в мороз достаточно любой искры, чтобы бензин заполыхал огнем. А вот температура вспышки у дизеля составляет аж +62°C. Случайные искры не смогут разогреть дизельную лужу до такой степени, чтобы та начала испаряться и гореть. Чтобы солярка загорелась на воздухе, ее нужно нагреть до температуры вспышки, например, газовой горелкой, усилив испарение. В зависимости от силы огня и количества дизеля в ёмкости топливо прогреется через 15-20 секунд и тогда наконец загорится.
Из-за свойств дизельного топлива дизельвоздушная смесь в цилиндрах воспламеняется сама, без участия свечи зажигания, при увеличении давления и сопутствующего ему увеличения температуры. С бензовоздушной смесью, как мы сказали выше, такое тоже возможно, хотя и с негативными последствиями. Тогда почему бы не залить бензин в дизельный ДВС? Тут основная проблема заключается в параметрах топлива, под которые спроектирован двигатель. Действительно, дизельный движок, в зависимости от степени технологичности (чем старше и проще, тем лучше) даже сможет немного поработать на бензине. Но из-за разницы в скорости воспламенения и горения бензина и дизеля двигатель будет подвергаться огромным разрушительным нагрузкам.
В современных движках на тяжелом топливе дизель впрыскивается в цилиндр не один, а несколько раз за один ход поршня. Сначала происходит предвпрыск небольшого количества топлива, которое загорается еще до того, как поршень достиг вершины хода. Затем, когда поршень достиг верхней мёртвой точки, и достигнуто максимальное сжатие воздуха в камере сгорания, впрыскивается оставшаяся часть дизеля. Двойной впрыск обеспечивает надежное возгорание и равномерное выделение газов, необходимых для толкания поршня вниз. Этапов впрыска в рамках одного такта двигателя может быть два, а может и все десять, тут уж как будет спроектирован двигатель.
Случайный залив бензина в дизельный авто на крупных сетевых заправках часто кончается относительно благополучно: приезжает сотрудник топливной компании и сливает бензин из бака и топливной системы. Источник: priZrak495 / DRIVE2
10. Что будет, если в бензиновый двигатель залить дизель
Если же залить дизель в бензиновый автомобиль, то практически сразу начнутся пропуски зажигания — дизелю не хватит давления и температуры в цилиндрах, чтобы стабильно самовоспламеняться, а искрой от свечи его не поджечь. Так как солярка тяжелее бензина, она сразу опустится на дно и попадёт в топливную систему.
Коротко о главном
Рекомендации по использованию бензинового автомобиля простые: заправляйтесь на проверенных заправках топливом с рекомендованным октановым числом, следите за свечами и, пожалуйста, никогда не пытайтесь подсветить бензобак зажигалкой!
Остались вопросы? Задавайте — постараемся ответить.
Любой, кто решит отыскать информацию о температуре кипения, горения или вспышки бензина обнаружит интересную вещь: даже в довольно авторитетных источниках между указываемыми значениями одного и того же параметра наблюдается существенная разница. Почему так происходит и каковы реальные величины?
Что нужно знать о техническом пропане?
Пропан технический представляет собой органическое вещество, относящееся к классу алканов. Он может быть природным и техническим, который образуется во время крекинга нефтепродуктов. Пропан известен как один из самых ядовитых газов.
Температура пламени
Температура пламени
Наверное, когда-нибудь задавали себе вопрос, какова температура пламени?! Всем известно, что, например, для проведения некоторых химических реакций требуется произвести нагрев реагентов. Для таких целей в лабораториях используют газовую горелку, работающую на природном газе, имеющем прекрасную теплотворную способность. При горении топлива — газа химическая энергия горения превращается в тепловую энергию. Для газовой горелки пламя можно изобразить так:
— самая верхняя точка пламени — одно из самых горячих мест пламени. Температура в этой точке около 15400C — 15500C
— чуть ниже (около 1/4 части) — в середине пламени — самая горячая зона 15600C
— далее идёт резкий спад до самой нижней точки пламени, где температура составляет всего лишь 3500C
Пропан технический: свойства
Среди основных параметров вещества стоит отметить следующие:
- сумма пропилена и пропана составляет не менее 75 % от всего объема (количество последнего не нормируется);
- сумма бутанов и непредельных углеводородов — не нормируется;
- количество жидкого остатка не должна превышать 0,7 % об.;
- давление насыщенных паров при температуре – 20 ◦С должно быть не менее 0,16 МПа;
- количество сероводорода и меркаптановой серы не должна превышать 0,013 % от всего объема;
- интенсивность запаха пропана должна превышать 3 балла.
Минимальная температур горения пропана составляет — 35 °C. Благодаря этому работать с газом можно в любых условиях. Самовоспламеняется пропан, при нормальном атмосферном давлении, при температуре в 466 °C. При 97 °C возникает критическая температура пропана. Температура горения пропан-бутана колеблется от 800 до 1970 °С, пламя сгорания чистого пропана имеет температуру около 2526 °C, а жаропроизводительность, в среднем, составляет 2110 °C. В газовых резаках, при смеси с кислородом от 1:4 до 1:5 (пропан:кислород), возникает температура пламени до 2830 °C.
Температура пламени
- Температура воспламенения для большинства твёрдых материалов — 300 °С.
- Температура пламени в горящей сигарете — 250–300 °С.
- Температура пламени спички 750–1400 °С; при этом 300 °С — температура воспламенения дерева, а температура горения дерева равняется примерно 500–800 °С.
- Температура горения пропан-бутана — 800–1970 °С.
- Температура пламени керосина — 800 °С, в среде чистого кислорода — 2000 °С.
- Температура горения бензина — 1300–1400 °С.
- Температура пламени спирта не превышает 900 °С.
- Температура горения магния — 2200 °С; значительная часть излучения в УФ-диапазоне.
Наиболее высокие известные температуры горения: дицианоацетилен C4N2 5’260 К (4’990 °C) в кислороде и до 6’000 К (5’730 °C) в озоне; дициан (CN)2 4’525 °C в кислороде.
Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.
Использование технического пропана
Технический пропан может быть использован в следующих сферах:
- в качестве топлива для грузовиков, при выполнении работ разного характера в промышленности;
- в строительстве: для резки металлолома, сварки, во время кровельных работ, для разогрева асфальта, для обогрева помещений;
- в быту для приготовления пищи, отопления дома, подогрева воды;
- в пищевой и химической промышленности для растворителей или в качестве пищевой добавки, известной как Е944.
Классификация
Пламя классифицируют по:
- агрегатному состоянию горючих веществ: пламя газообразных, жидких, твёрдых и аэродисперсных реагентов;
- излучению: светящиеся, окрашенные, бесцветные;
- состоянию среды горючее–окислитель: диффузионные, предварительно перемешанных сред (см. ниже);
- характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
- температуре: холодные, низкотемпературные, высокотемпературные;
- скорости распространения: медленные, быстрые;
- высоте: короткие, длинные;
- визуальному восприятию: коптящие, прозрачные, цветные.
Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):
- тёмная зона (300—350 °C), где горение не происходит из-за недостатка окислителя;
- светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500—800 °C);
- едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900—1500 °C).
Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.
Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей — от 0,03 до 15 м/с.
Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении — до 100 м/с; при взрывном горении — от 300 до 1000 м/с; при детонационном горении — свыше 1000 м/с.
Пламя горящей свечи сопровождало человека тысячи лет.
Окислительное пламя
Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются.
Восстановительное пламя
Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.
Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO4. С помощью платиновой петли забирают BaSO4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным.
Цвет пламени зависит от нескольких факторов. Наиболее важны: температура, наличие в пламени микрочастиц и ионов, определяющих эмиссионный спектр.
Отличие пропана от метана
Среди отличительных особенностей пропана стоит отметить:
- более высокая эффективность при сгорании, благодаря чему он намного эффективнее метана во время проведения сварочных работ;
- высокая инертность газа, что позволяет ему более активно вступать в разнообразные химические реакции;
- пропан безопаснее метана и отличается наличием наркотического действия;
- при транспортировке пропана не нужно использовать какое-то специальное оборудование, достаточно обычных стальных баллонов.
Кроме этого, пропан является более дешевым и легче заправляется.
Применение
Пламя (окислительное и восстановительное) используется в аналитической химии, в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки.
Особенности хранения
Для хранения и перевозки пропана используют металлические баллоны, которые окрашены в ярко0красный цвет. Их нельзя размещать в условиях слишком низких или слишком высоких температур, так как возможно изменения агрегатного стана вещества и появляется риск взрыва.
Как видим, пропан – это невероятны полезное вещество, применяемое в самых разных сферах, при работе с которых нужно знать массу нюансов и правила безопасной эксплуатации.
Газ (фр. gaz, от греч. chaos – хаос), агрегатное состояние вещества, в котором оно равномерно заполняет весь предоставленный ему объем.
В тридцатые годы прошлого века англичанин Барнетт получил патент на газовый двигатель, а в 1860 году француз Э. Ленуар построил мотор, работающий на смеси воздуха и газа. Такой выбор горючего никого не удивил – бензина еще не было.
Повсеместный рост количества автомобилей потребовал значительного увеличения объемов производства бензина. О газе как о возможном моторном топливе надолго забыли. Лишь через 100 лет после Барнетта, в конце тридцатых годов нашего столетия, возродилась мысль о его использовании. Тогда появились первые газогенераторные автомобили. Газ вырабатывался в топке, а оттуда подавался в двигатель.
Бензин дорожает, и сегодня его пытаются заменить. И природным газом, и синтезированными газами и жидкостями, например – спиртом, который гонят из самого разного сырья: от тростника до апельсиновых корок.
Все эти виды топлива менее опасны для окружающей среды, чем бензин.
Пламя в условиях невесомости
В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры, поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.
В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.
Октановое число 105?
Исследования опровергли устоявшееся мнение, что использование газа вместо бензина – вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше.
Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца.
В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) – токсичное для человека вещество.
Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам.
Двигатель внутреннего сгорания автомобиля работает по классическому четырехтактному циклу. Газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень и двигает шатунный механизм, а затем выбрасывается из цилиндра.
Чем сильнее можно сжать топливо без возникновения детонации*, тем больше мощность двигателя. Антидетонационную способность топлива определяют октановым числом. Чем оно выше, тем лучше топливо. Среднее октановое число природного газа – 105 – недостижимо для любых марок бензина.
* Детонация – распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе.
Эксплуатация показала, что автомобили на газе более выносливы – в полтора-два раза дольше работают без ремонта. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Кроме того, масляная пленка дольше держится на металлических поверхностях – ее не смывает жидкое топливо, и, наконец, газ практически не вызывает коррозию металла.
Несмотря на многочисленные достоинства природного газа, закрывать заправочные станции и выбрасывать бензиновые канистры еще рано.
Метан
В переходе на газовое топливо есть свои сложности. Так, например, плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20. 25 МПа (200. 250 атмосфер). Для хранения в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.
Пропан-бутан
Пропан-бутан – синтетическое топливо. Его получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). Газобаллонная аппаратура для сжиженного пропан бутана несколько проще. Процесс заправки машин на газонаполнительных станциях несложен и очень похож на заправку бензином.
По своим свойствам сжиженный пропан-бутан почти не отличается от сжатого природного газа. То же высокое октановое число, те же неплохие экологические и эксплуатационные показатели. Есть у сжиженного пропан бутана и преимущество перед метаном – 225 литров этого горючего хватает на пробег около 500 километров, а метана, помещающегося в восьми баллонах – на вдвое меньший. На сжиженном газе работает вдвое меньше машин, чем на сжатом и вот почему. Пропан бутана получают в 20. 25 раз меньше, чем добывают природного газа.
Кол-во блоков: 25 | Общее кол-во символов: 23055
Количество использованных доноров: 5
Информация по каждому донору:
Нашел на одном форуме очень интересную информацию. Возможно кому пригодится.
Хочу прояснить некоторые моменты в плане физики и практики эксплуатации авто на газе:
1) вопреки расхожим заблуждениям газ ничего в двигателе "сушить " не может. Наоборот, ввиду газообразного фазового состояния газ НЕ РАСТВОРЯЕТ И НЕ СМЫВАЕТ масляную плёнку со стенок цилиндров. Как следствие, улучшается смазываемость ЦПГ.
2) о том, что газ якобы "сушит клапана": сушить он опять же ничего в принципе не может по прчине нулевой гигроскопичности ввиду своей газообразной фазы. Но при работе ДВС на газе на такте впуска топливо-воздушной смеси температура тарелки клапана будет НА НЕСКОЛЬКО ГРАДУСОВ выше, нежели при работе на бензине. За счет того, что облако микрокапель бензина из форсунки дополнительно охлаждает открытый клапан на такте впуска. А как известно, теплодинамика клапанов распределяется примерно 30:70 — седло клапана : направляющая втулка. В технической литературе охлаждением тарелки клапана облаком микрокаплей бензина пренебрегают изза малости и незначительности величины. В уравнениях термодинамики для ДВС этот параметр ВООБЩЕ отсутствует.
Заблуждение об "осушении" газом клапанов берет своё начало в давние советские времена. Когда делались первые попытки внедрения ГБО в таксопарках и автоколоннах. По сравнению с ЭТИЛИРОВАННЫМ бензином (а НЕэтилированного в те времена просто не было), газо-воздушная смесь дйствительно немного ухудшала условия смазки седел клапанов. Так как этилирующие присадки содержали СВИНЕЦ, который в некоторой мере и выполнял функцию смазки седел клапанов.
Нынче же выпуск этилированного бензина прекращен. И газ НИКАК не может ухудшить условия смазки седла клапана по сравнению с бензином, выпущенным по современным нормам.
3) в сравнении с бензином "октановое" (не совсем корректое для газа название) число газа составляет примерно 102-105-110 единиц. Этим обусловлены некоторые особенности и последствия работы ДВС на газо-воздушной смеси:
— чем выше степень сжатия (а соосветственно и компрессия), тем быстрее распространяется в камере сгорания фронт пламени, тем выше температура окисленной смеси, тем выше конечное (рабочее) давление над поршнем.
— соответственно для достижения идеальных условий для работы ДВС на газе его степень сжатия должна быть выше, чем при работе на бензине.
При проектировании ДВС исходят из определённой скорости сгорания бензовоздушной топливной смеси. Соответственно подбираются и настраиваются фазы газораспределния. Они подбираются с определённым запасом. Т.е. В ПЕРИОД СГОРАНИЯ топливной смеси оба глапана закрыты. И только ПОСЛЕ ПОЛНОГО СГОРАНИЯ топливной смеси и образования над поршнем перегретого газа в соответствии с адиабатными процессами этот перегретый газ начинает толкать поршень вниз, постепенно расширяясь и соответственно охлаждаясь. В итоге на выходе из камеры сгорания температура составляет примерно 800-980 градусов.
Так как октановое число газа выше, а фазовая структура иная (газ вместо капель-облачной структуры) то и скорость его сгорания значительно медленнее. Соответственно увеличивается время горения газо-воздушной смеси. Помимо того, что температура перегретого газа над поршнем меньше, меньше его давление и пр., при некоторых режимах работы ГАЗОВОЗДУШНАЯ СМЕСЬ ПРОДОЛЖАЕТ ДОГОРАТЬ ПОСЛЕ ОТКРЫТИЯ ВЫПУСКНОГО КЛАПАНА. Соответственно, температура на выходе из камеры сгорания кратковременно может повыситься до 1500-1800 градусов! Что очень быстро может привести к перегреву и термическим необратимым деформациям клапанов ( "прогару" ). В исключительных случаях это растянутое горение газовоздушной смеси приводит к тому, что теплодинамика поршня становится обусловлена не адиабатными процессами, а постоянным нагревом от не успевающей сгорать газо-воздушной смеси. И начинается необратимая тепловая деформация поршня.
Как с эти бороться и так ли это страшно?
Фишка в том, что примерно то же самое произойдет, если в классику залить 98й бенз, или тем более 102й (оказывается в европе и такой есть, не помню как обозначается, у нас на нем некоторые особо фанатичные пацыки по ночам устраивают гонки).
Для борьбы с этой бякой (прогарами клапанов и цилиндров) что при работе что на бензине, что на газе можно использовать два метода: увеличение опережения зажигания и увеличение степени сжатия.
Увеличение угла опережения на современных ЭБУ проблемантично. Нужно перешивать контроллер под специальную "газовую" программу! Программ таких мало. Тем более мало специалистов, которые грамотно это сделают. В идеале этот путь предусматривает установку ДВХХ контроллеров, бензинового и газового. И систему их коммутирования. Это сложно и дорого. Поэтому на ГБО 4 поколения для управления газовой форсункой используется сигнал, приходящий на форсунку бензиновую. Косяк в том, что НИКАК нельзя изменить карту зажигания. Так как эта карта зашита в штатном УБУ, которы и продолжает на самом деле управлять подачей газа. Но фишка в том, практически большинство современных автомобилей имеют так называемую "адаптивную" систему управления. Т.е. блок САМ, естественно в определенных пределах, может корректировать карты зажигания. Если нет детонации (а на газе ввиду его повышенной антидетонационной стойкости она отсутствует), то очень скоро блок выводит карту зажигания на максимально возможно ранне зажигания на любом режиме работы двигателя. Это во-первых.
А во-вторых, современные ДВС имеют высокую степень сжатия, которая исключает возникновение вышеописанных мной негативных последствий работы на газо-воздушной смеси.
В итоге, учитывая всё вышесказанное:
Не нужно бояться газа. Нужно просто знать некоторые особенности. И соответственно их учитывать.
Не нужно тулить газ на древние моторы с низкой степенью сжатия и ожидать после этого бешенного ресурса и суперэкономичности. Чем выше степень сжатия двигателя и лучше его общее техническое состояние (в частности компрессия), тем оправданнее установка газового оборудования. Тем меньше будет разница в расходе газа и бензина. Тем выше экономический эффект.
НИ В КОЕМ СЛУЧАЕ НЕЛЬЗЯ ДУШИТЬ РАСХОДОМ ГАЗА СОВРЕМЕННЫЕ ИНОМАРОЧНЫЕ ДВИГАТЕЛИ (особенно большеобъемные) ПРИ ИСПОЛЬЗОВАНИИ ГБО 4 ПОКОЛЕНИЯ!
Сгорание обеднённой газо-воздушной смеси будет проходить жестко, что будет воспринято датчиками, как ДЕТОНАЦИЯ! А при том, что лямбда-зонд будет продолжать показывать "обеднённую смесь" (по причине того, что газ при сгорании не дает столько гав…на, сколько бензин), то контроллер начнёт резко заваливать угол опережения зажигания. Соответственно позднее зажигание — и ГВС начинает стабильно догорать в коллекторе. Очень быстро настает пи…сец клапанам и ГОТОВЬТЕ ДЕНЕЖКИ НА НОВУЮ ГОЛОВУ!
Если вам дорого ваш автомобиль, вы на самом деле экономны и дальновидны и если это не слишком затруднительно для вас в плане возьни и не представляет конструктивных трудностей в плане авто, НЕ ПОМЕШАЕТ СНЯТЬ ГОЛОВУ И НЕМНОГО ЕЁ ШЛИФАНУТЬ. Заодно проверить притертость клапанов и износ втулок.
Эффект значительный!
Так на 99 ВАЗке шлифовка головы на 0,5 мм с последующим точным выставление фаз газораспределения с помощью регулируемой шестерни снизила расход газа примерно на 15%. Динамика возросла значительно. Правда бензин после этого использовался только 95 и 98.
По поводу проблем с зажиганием: как правильно было подмечено одним из форумчан, температура вспышки газовоздушной смеси несколько выше, чем у бензо-воздушной. Соответственно капризы запущеной системы зажигания будут гораздо заметнее при работе двигла на газе.
ПОэтому не будет лишним просто почаще её проверять и содержать в исправном обслуженном состоянии.
+ из собственного опыта, относящегося не только к эксплуатации машин с ГБО:
— при установке свечей проверять их омметром на сопротивление. Чемменьше внутреннее сопротивление, тем лучше. Чем меньше разброс сопротивлений, тем ровнее работа двигателя! — На 8клапанных вазах огромный эффект даёт применение многоконтактных свечей! Искра-то будет всегда ТОЛЬКО ОДНА. Но вот искровой промежуток будет ВСЕГДА открыт и направлен в камеру сгорания. Следовательно во всех 4х цилиндрах фронт пламени будет распространяться в более одинаковых условиях. Более ровная работа двигателя.
— искровой зазор свечи нужно немного уменьшить. Примерно на 15-20%.
— поставить высоковольные провода, сделанные на заказ. В некоторых торговых точках вам сделают провода любой длины. А провода можно попросить подобрать с наименьшим внутренним удельным сопротивлением и при конструктивной возможности желательно сделать их все одинаковой длины.
Поверьте, эффект вас поразит даже при езде на бензине.
Если у Вас не гидрокомпенсаторы, то обратитесь на сервис, чтобы зазоры клапанов вам выставили несколько большие.
И проверяйте регулировку немного чаще, чем вы делали это раньше.
Эта мера сведет вероятность влияния газа на прогар клапанов практически к нулю.
Для пущей уверенности при установке и настройке ГБО 4 поколения можно попросить мастеров настроить блок управления подачей газа на автоматическое переключение на бензин при работе двигателя на высоких оборотах, превышающих определённый порог.
Почему и зачем…
Уже писал, что период сгорания порции газо-воздушной смеси несколько больше, нежели у бензина в силу ряда причин. Поэтому при работе на высоких оборотах кратковременно может возникнуть режим, когда догорание смеси будет происходить уже ПОСЛЕ открытия выпускного клапана. Например, при возникновении резкой нагрузки в период, когда двигатель будет работать на больших оборотах, ЭБУ значительно уменьшает угол опережениязажигания. Пождиг смеси происходит позднее.
Относительно всего времени работы двигателя эти экстремальные режимы очень кратковременны. И практически не влияют на снижение ресурса системы газораспределения.
Но можно исключить и их.
Например, Ваша машина оборудована автоматической коробкой передач. Переключение передач при спокойной манере езды происходит примерно на 3200 оборотах. ПОпросите мастера отрегулировать Вам автоматический переход на бензин при оборотах свыше 3800-4000. И соответственно — на газ при снижении оборотов ниже этого порога. Рывка вы не заметите. Расход бензина при резких обгонах, когда у автомата срабатывает кик-даун, будет незначительным, так как основное время машина будет работать на газе.
Зато такое переключение исключит даже саму вероятность возникновения неблагоприятных режимов работы двигателя.
Читайте также: