Средняя температура газов в цилиндрах работающего двигателя
Рабочая температура современных двигателей и правда гораздо выше, чем у моторов, разработанных лет двадцать тому назад. И это сказывается на их надежности. Но не все так просто.
В девяностые и нулевые на наших дорогах часто можно было наблюдать автомобили с перегревшимся двигателем. Их было видно издалека по клубам пара из-под капота. В основном это были немолодые отечественные машины, а причина перегрева часто крылась в некачественных комплектующих: некондиционные термостаты, насосы охлаждающей жидкости, дефектные шланги и радиаторы. Двигатели теряли охлаждающую жидкость и закипали.
Какая температура двигателя нормальная?
Эффективность работы двигателя внутреннего сгорания повышается с ростом температуры. Казалось бы, зачем тогда нужна система охлаждения? Проблема в том, что современные конструкционные материалы, как и смазывающие вещества, не способны работать при слишком высоких температурах. Однако мотористы стараются сделать двигатели максимально эффективными. Если еще пару десятилетий назад считалась нормальной рабочая температура в 80°С, то теперь показатель — около 105°С. Мотор с такими характеристиками экономичнее, и у него ниже токсичность отработавших газов (за исключением окислов азота).
Почему мотор греется?
-
В пробках, которые стали неотъемлемой частью нашей жизни, температура двигателя достигает 115–125°С.
Производители борются со слишком высокой рабочей температурой двигателя. Применяют форсунки охлаждения поршней маслом. Устанавливают теплообменники, через которые циркулируют и охлаждающая жидкость, и моторное масло. На начальном этапе прогрева температура антифриза растет быстрее и он нагревает масло. А при больших нагрузках полностью прогретого мотора масло охлаждается от более холодного антифриза. Без такого теплообменника масло охлаждалось бы лишь за счет обдува поддона двигателя, а этого зачастую недостаточно.
В чем опасность?
На все автомобили стали ставить очень тонкие, облегченные радиаторы. Теплоотдача их достаточна, пока все работает в штатном режиме, но как только радиатор засорится, он не сможет долго сдерживать температуру мотора в рабочем диапазоне. Все потому, что системы охлаждения современных моторов разработчики стараются сделать максимально эффективными, без какого-либо запаса. Раньше на 75-сильный движок приходилось порядка 10 литров тосола, а сейчас в 150-сильный мотор заливают чуть больше 5 литров. Например, в Ниву с карбюраторным мотором входило 10,7 л, а кроссоверу Hyundai Creta c 2-литровым мотором в систему заливают 5,7 л антифриза.
Чем меньше объем охлаждающей жидкости, тем быстрее изменится температура в системе. В случае какой-либо неисправности закипит сразу же.
А если капитально перегрел?
Если указатель температуры двигателя оказался в красной зоне, которая начинается после 120–125 °С, может случиться следующие:
- Задиры цилиндров. У современных моторов зазоры в паре поршень-цилиндр малы, а при перегреве обращаются в ноль и начинаются задиры. Ну а дальше последуют снижение показателей двигателя, прогрессирующий износ, масложор.
- Деградация масла. В условиях перегрева моторное масло теряет часть свойств, быстрее угорает, что может привести к масляному голоданию.
- Выход из строя резиновых и пластмассовых деталей двигателя. Быстрее дубеют сальники, что может вызывать повышенный расход масла; стареют пластмассовые детали мотора, что может вызвать их механическое разрушение.
- Выход из строя каталитического нейтрализатора. У перегретого двигателя растет и температура отработавших газов. Возможно оплавление керамических сот. Для предотвращения нужны более высококачественные материалы нейтрализаторов, а производители в стремлении сэкономить, напротив, применяют все более доступные и недолговечные конструкции.
Что может владелец?
- Следить за чистотой радиаторов. Это, пожалуй, самый действенный способ предотвратить перегрев. Мыть радиаторы следует не реже одного раза в год.
- Замена ОЖ не реже чем раз в 60 000 км. Конечно, это не столь важно с точки зрения теплообмена, но продлит срок службы узлов системы охлаждения.
- Некоторые производители автокомпонентов выпускают термостаты с разной температурой открытия. Например, для широко распространенного мотора К4М Renault есть термостаты на 82°С, а есть на 86°С. И разница, поверьте, очень заметна. Для автомобилей с очень напряженным тепловым режимом лучше подобрать термостат с более низкой рабочей температурой.
- Рекомендую установить точный цифровой термометр. Для машин без штатного прибора это обязательно. Можно использовать программу для смартфона в сочетании с прибором ELM 327, можно поставить отдельный прибор.
Пример установки дополнительного борткомпьютера на Kia Rio. В штанной комплектации автомобиля указатель температуры мотора не предусмотрен, а тут даже температура АКП присутствует.
Пример установки дополнительного борткомпьютера на Kia Rio. В штанной комплектации автомобиля указатель температуры мотора не предусмотрен, а тут даже температура АКП присутствует.
Более высокая рабочая температура современных двигателей обусловлена конструктивными особенностями, которые появились за последнее время. Как следствие, современный мотор легче перегреть. Это факт. Поэтому больше внимания следует уделять техническому обслуживанию машины, чтобы не допустить беды. Читай — дополнительных трат на ремонт или замену двигателя.
Есть ли в этом заговор автопроизводителей? Зависит от вашего мировоззрения.
(!)Средняя температура газов в цилиндре работающего двигателя около 2000 С. В процессе работы стенки цилиндров, поршня и головки цилиндров нагреваются газами. Если двигатель не охлаждать, то сгорит масляная плёнка между трущимися деталями, в результате чего повысится износ деталей, может возникнуть заклинивание поршней из-за их расширения и другие неисправности.
Вопрос № 2. В каких пределах поддерживается температура охлаждающей жидкости в прогретом двигателя?
Правильный ответ:80-90 С
(!) Система охлаждения служит для отвода теплоты от нагретых деталей и поддержания оптимального температурного режима работающего двигателя, что достигается искусственным охлаждением с помощью жидкости (жидкостное охлаждение) или окружающего воздуха (воздушное охлаждение). Для нормальной работы двигателя температура охлаждающей жидкости должна быть 80-90 С
Вопрос № 3. Как циркулирует охлаждающая жидкость в непрогретом двигателе?
Правильный ответ:Из рубашки охлаждения через термостат в насос и затем опять в рубашку охлаждения
(!) В непрогретом двигателе охлаждающая жидкость циркулирует из рубашки охлаждения через термостат в насос и затем опять в рубашку охлаждения, минуя радиатор (по малому кругу)
Вопрос №4. Как циркулирует охлаждающая жидкость в полностью прогретом двигателе?
Правильный ответ:Из рубашки охлаждения, через термостат в радиатор, из него в насос и затем опять в рубашку охлаждения.
(!) В полностью прогретом двигателе, охлаждающая жидкость направляется термостатом из рубашки охлаждения в верхний бак радиатора (по большому кругу). Проходя из верхнего бака радиатора в нижний по многочисленным трубкам, жидкость охлаждается потоками воздуха, создаваемыми вентилятором и поступающим между трубками. Из нижнего бака радиатора охлаждающая жидкость вновь нагнетается насосом в рубашку охлаждения двигателя.
Вопрос №5 Какой цифрой обозначен насос системы охлаждения?
Правильный ответ: Цифрой 5
(!) На схеме обозначены:
Цифрой 1 – радиатор отопителя
Цифрой 2 – расширительный бачок
Цифрой 3 - термостат
Цифрой 4 - вентилятор
Цифрой 5 – насос системы охлаждения
Вопрос №6. Что можно сказать о термостате, если при температуре охлаждающей жидкости в рубашке охлаждения 40 градусов, патрубок, соединяющий термостат с верхним бачком радиатора, имеет такую же температуру?
Правильный ответ:Термостат неисправен.
(!) Термостат служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах. Он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор. При холодном двигателе клапана термостата закрыты и охлаждающая жидкость направляется через канал к входному отверстию насоса, а через него в рубашку охлаждения, т.е. циркулирует по малому кругу, не попадая в радиатор.
Можно сделать вывод, что в случае, если при температуре охлаждающей жидкости в рубашке охлаждения 40 градусов патрубок, соединяющий термостат с верхним бачком радиатора, имеет такую же температуру, то охлаждающая жидкость направляется термостатом не обратно в рубашку охлаждения, а в верхний бачок радиатора, а значит, термостат неисправен.
Вопрос № 7. Каким должен быть патрубок, соединяющий термостат с верхним бачком радиатора , при исправном термостате и температуре охлаждающей жидкости в рубашке охлаждения 40 градусов?
Правильный ответ:Холодным.
(!) Термостат служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах. Он представляет собой клапан, который регулирует количество циркулирующей жидкости через радиатор. При холодном двигателе клапан термостата закрыт и охлаждающая жидкость направляется через канал к входному отверстию насоса, а через него в рубашку охлаждения, т. е. циркулирует по малому кругу, не попадая в радиатор. Таким образом, можно сделать вывод, что при исправнном термостате и температуре охлаждающей жидкости в рубашке охлаждения 40 градусов патрубок, соединяющий термостат с верхним бачком радиатора, должен быть холодным.
Вопрос № 1. К чему может привести отсутствие теплоотвода от наиболее нагретых деталей после перегрева двигателя до определённой температуры?
Правильный ответ:К заклиниванию и разрушению деталей двигателя
(!)Средняя температура газов в цилиндре работающего двигателя около 2000 С. В процессе работы стенки цилиндров, поршня и головки цилиндров нагреваются газами. Если двигатель не охлаждать, то сгорит масляная плёнка между трущимися деталями, в результате чего повысится износ деталей, может возникнуть заклинивание поршней из-за их расширения и другие неисправности.
Вопрос № 2. В каких пределах поддерживается температура охлаждающей жидкости в прогретом двигателя?
Правильный ответ:80-90 С
(!) Система охлаждения служит для отвода теплоты от нагретых деталей и поддержания оптимального температурного режима работающего двигателя, что достигается искусственным охлаждением с помощью жидкости (жидкостное охлаждение) или окружающего воздуха (воздушное охлаждение). Для нормальной работы двигателя температура охлаждающей жидкости должна быть 80-90 С
Вопрос № 3. Как циркулирует охлаждающая жидкость в непрогретом двигателе?
Правильный ответ:Из рубашки охлаждения через термостат в насос и затем опять в рубашку охлаждения
(!) В непрогретом двигателе охлаждающая жидкость циркулирует из рубашки охлаждения через термостат в насос и затем опять в рубашку охлаждения, минуя радиатор (по малому кругу)
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Когда читаешь очередную умную статью по теории ДВС — постоянно проскакивает мнение, что было бы замечательно придумать такой механизимь, чоп степень сжатия у двигателя была поменьше(для предотвращения детонации и уменьшения образования вредных веществ), а вот степень расширения побольше(для максимальной утилизации давления сгорающих газов)…
И вот вроде всё логично пишут — придраться особо не к чему.
А начинаешь разбираться сам — получается всё навыворот… :(
В прошлом моём опусе мы выяснили, что бензиновый двигатель должен иметь "степень сжатия" не менее 18 для того, чтобы можно было и на холостом ходу и на минимальной нагрузке воспламенять смесь после ВМТ для достижения минимального расхода и максимальной мощности(читай — для получения приемлемого КПД).
Сегодня я предлагаю сосредоточится на "степени расширения".
И чтобы нам не отвлекаться ПОКА на всяческое сгорание и прочую лабудень типа преобразования возвратно-поступательного движения в движение вращательное — я предлагаю поиграться вначале с голой ЦПГ(цилиндро-поршневой группой).
Возьмём поршень и цилиндр длиной… ну скажем 200 миллиметров. Поршень у нас будет двигаться внутри этого цилиндра на расстояние в 100 миллиметров. В цилиндр через впускной вентиль будет подаваться из огромного баллона сжатый воздух давлением в 100 атмосфер — ну а мы будем наблюдать за тем, что происходит:
Небольшое лирическое отступление.
Привычные нам термины типа "степень сжатия", "камера сгорания" имеют смысл только на двигателях внутреннего сгорания. В паровых и пневматических двигателях нет даже понятий таких. Зазор между днищем поршня и головкой блока в ВМТ(то, что обзывают "камерой сгорания" у ДВС) цилиндров может быть, а может и не быть — не принципиально. Соответственно — ничего в цилиндре при обратном ходе поршня сжиматься не должно, а потому цикла сжатия в этом двигателе нет и в помине.
При рабочем ходе и расширения тоже может не быть, как ни глупо это прозвучит на первый взгляд. Опять таки не принципиально.
Простейший пневматический двигатель:
Резонный вопрос — а нахрена нам этот пневматический двигатель, если разбираемся мы с двигателем внутреннего сгорания? Дело в том, что я хочу пока немного абстрагироваться от процессов сгорания и разобраться подробнее — как вообще происходит преобразование давления газов в цилиндре в момент на выходном валу двигателя.
В цилиндр пневматического(парового) двигателя рабочее тело поступает "полностью готовое к употреблению". Нагрев, сжатие — все нужные издевательства над рабочим телом производят ДО ТОГО КАК подать его в цилиндр. ЦПГ занята только узкоспециализированным делом — преобразует ДАВЛЕНИЕ в механическую РАБОТУ.
Рассмотрим несколько возможных режимов работы нашего "двигателя":
1). Режим максимальной мощности.
Тот самый режим, когда РАСШИРЕНИЯ в цилиндре не происходит.
Давление в цилиндре поддерживается на одном уровне на всём ходу поршня от ВМТ до НМТ.
Диаграмма давления в цилиндре при движении поршня выглядит вот так:
В термодинамике режим протекающий при постоянном давлении обзывают "изобарным"…
Правда при более внимательном ознакомлении с терминологией оказывается что не только давление, но и масса газа должна быть постоянна…
В нашем случае постоянны и давление и температура и теплоёмкость и наверняка ещё куча других страшных слов, но масса РТ в цилиндре однозначно не константа. Я не нашёл как обозвать одним словом первый же режим нашего двигателя. Наверное не там искал.
Неважно. Я нихрена не понимаю в теплотехнике, но раз режим двигателя такой существует — то пускай теплотехника и страдает по этому поводу. А я буду объясняться на пальцах, раз термина нет… Сорри.
В двигателе внутреннего сгорания такой режим невозможен принципиально — просто невозможно так организовать сгорание топлива. В пневматическом(паровом) двигателе таких ограничений нет — рабочее тело подаётся из баллона(котла), который размерами значительно превосходит размеры нашего цилиндра. При этом, если задуматься — то и на данном режиме работы двигателя мы всё равно используем энергию РАСШИРЕНИЯ сжатого РТ. Просто расширяется в данном случае одномоментно ВСЁ рабочее тело в баллоне(или в котле) — выдавливая часть себя самого в цилиндр двигателя, выдавливая и поршень из цилиндра — совершая при этом полезную механическую работу.
Если объём "камеры сгорания" у нашего двигателя сделать 0 мм хода поршня(в ВМТ поршень упирается в головку блока цилиндров) — то при каждом рабочем ходе поршня у нас будет затрачиваться 100 условных единиц объёма рабочего тела. Если объём "камеры сгорания" сделать равным 1 мм хода поршня — то будет затрачиваться 101 условная единица объёма рабочего тела. Если 2 мм хода поршня — то будет затрачиваться 102 условных единиц объёма рабочего тела…
При прочих равных увеличение объёма "камеры сгорания" увеличивает только прямые потери рабочего тела — т.е. для данного режима оптимально когда объём "камеры сгорания" минимален. Сама "камера сгорания" никакой функциональной нагрузки на данном режиме работы двигателя не имеет.
После завершения рабочего хода через открывающийся выпускной клапан давление сбрасывается в атмосферу, а потом туда же вытесняется поршнем на обратном ходу и весь не нужный уже газ…
Понятное дело что энергия сжатого газа при таком режиме работы двигателя используется не полно — почти вся энергия той порции рабочего тела, что попала в цилиндр двигателя, будет выброшена в атмосферу при открытии выпускного клапана.
Потому в попытках полнее использовать зазря пропадающую энергию додумались выпускать давление не в атмосферу, а в ещё один двигатель… и в ещё один… Как то так:
Даже на паровозе режим максимальной мощности двигателя используют редко(тем не менее такой режим абсолютно штатный и никакого стресса для двигателя не представляющий) — слишком высокий расход рабочего тела и, соответственно, нерациональное использование горючего.
Зато и МАКСИМАЛЬНЫЙ крутящий момент такого двигателя — просто дурной по сравнению с ДВС такого же размера и массы.
Посмотрите на паровоз — что там из себя представляет непосредственно двигатель на общем фоне?!
Такому двигателю не нужен чрезмерный запас прочности — максимальное давление цикла на этом режиме равно среднему давлению цикла.
Размер ЦПГ теоретически не ограничен ничем. Можно сделать ЦПГ длиной 10 см, а можно 10 метров.
2). Режим частичной мощности.
Если обеспечивать давление в 100 атмосфер только на части пути поршня(например прерывать подачу РТ впускным клапаном) — то оставшийся путь поршень будет проходить при давлении, уменьшающемся пропорционально увеличению объёма "камеры сгорания".
Часть цикла до закрытия клапана у нас будет протекать по "изобарному" закону, другая часть — по "адиабатному".
Кривые давления в цилиндре при движении поршня будут выглядеть как-то так:
По мере того, как "адиабатный" процесс начинает превалировать над "изобарным" — мы не можем не заметить существенное уменьшение расхода рабочего тела над выполненной работой. Поскольку на приготовление рабочего тела мы затрачиваем энергию — то соответственно увеличивается эффективность(КПД) двигателя. На выполнение единицы работы затрачивается всё меньше энергии. Например при подаче 50% рабочего тела суммарная мощность на валу падает всего на 20%; 25% рабочего тела обеспечивают 50% мощности на валу и так далее… Максимум эффективности получается когда "камера сгорания" заполняется рабочим телом только в момент нахождения поршня в ВМТ и весь дальнейший рабочий цикл происходит за счёт максимально полного РАСШИРЕНИЯ рабочего тела, находящегося в цилиндре.
Объём потерь энергии можно элементарно просто оценить по конечному давлению газов в самой правой части графика. Чем выше давление в конце рабочего хода поршня — тем выше потери и тем меньше КПД.
Внимание!
Поскольку рабочее тело часть работы совершает, расширяясь уже непосредственно в цилиндре — то, как ни странно это прозвучит, объёмом "камеры сгорания" можно считать весь тот объём цилиндра, что заполняет РТ до момента закрытия впускного клапана. Тот зазор между поршнем и головкой блока цилиндров, что мы привыкли обзывать "камерой сгорания" просто является минимально возможным объёмом "КС".
Этот минимальный объём определяет максимальную(геометрическую) степень расширения нашего двигателя.
Но сама по себе СТЕПЕНЬ РАСШИРЕНИЯ нашего двигателя константой не является!
Чем больше фактический объём "КС" — тем больше мощность двигателя, но тем меньше его эффективность в условиях конечной длины цилиндра. И наоборот.
Запомните этот важный момент. Он нам сильно пригодится в дальнейшем.
3). Режим малой мощности.
Если открывать впускной клапан нашего "двигателя" в ВМТ только на мгновение, и обеспечивать при нахождении поршня в ВМТ давление не 100 атмосфер, а ниже(например — 90, 50, 15) — то ВЕСЬ рабочий цикл будет протекать по "адиабатному" закону. Вырабатываемая двигателем работа уменьшается пропорционально уменьшению расхода рабочего тела, правда эффективность рабочего процесса уже не увеличивается, а начинает уменьшаться…
Кривые давления в цилиндре при движении поршня в этом режиме выглядят так:
На этом режиме объём зазора между поршнем и головкой блока цилиндров(то, что мы привыкли обзывать "камерой сгорания") начинает играть определяющую роль в протекающих процессах так как напрямую определяет мощность двигателя. Чем больше объём "камеры сгорания" в ВМТ — тем бОльший путь придётся пройти поршню для каждого удвоения объёма газов, ну а расстояние напрямую влияет на объём совершаемой РАБОТЫ.
Потому на этом режиме работы уже не прокатят прежние вольности с длиной ЦПГ — ведь длина рабочего хода поршня строго лимитирована объёмом "камеры сгорания" и требуемой СТЕПЕНЬЮ РАСШИРЕНИЯ рабочего тела.
Какие ещё выводы можно сделать на основании вышерассмотренных графиков?
1). Самый эффективный процесс в двигателе на основе цилиндро-поршневой группы — это несомненно "адиабатный". Мгновенный подвод(выделение) всей энергии в ВМТ при минимальном объёме "камеры сгорания" обуславливает создание максимального ДАВЛЕНИЯ газов, РАСШИРЕНИЕ которых в процессе движения поршня и выполняет механическую работу.
Если пытаться подводить дополнительные порции энергии(изотермный процесс или его подобие) во время рабочего хода поршня, ограниченного в перемещении — то каждая последующая порция энергии будет выделяться во всё увеличивающейся "камере сгорания" и будет создавать всё меньший прирост ДАВЛЕНИЯ, а как мы уже выяснили — это чревато неполным расширением рабочего тела к концу рабочего хода поршня и увеличением потерь энергии с выхлопными газами. Часто мелькающее утверждение о том, что самым эффективным является двигатель на основе детонационного сгорания — полностью подтверждается. Но дело тут вовсе не в скорости сгорания топлива(на эту тему поговорим отдельно), а в механизме преобразования создаваемого ДАВЛЕНИЯ в МОМЕНТ и ПЕРЕМЕЩЕНИЕ(читай — в РАБОТУ) с помощью ЦПГ.
2). Ход поршня в цилиндре напрямую завязан на степень РАСШИРЕНИЯ объёма "камеры сгорания".
Расширение не может быть слишком маленьким — иначе значительная часть энергии будет выбрасываться в атмосферу вместе с высокими давлением и температурой выхлопных газов.
Расширение не может быть слишком большим — иначе давление рабочего тела приблизится к атмосферному давлению(а может даже стать ниже атмосферного!), а как мы знаем — поршень в цилиндре движется только за счёт разницы давлений. Чем больше разница давлений над поршнем и под поршнем — тем выше момент двигателя на валу. Самое минимальное давление в цилиндре при самой малой мощности двигателя в конце рабочего хода должно превышать давление атмосферы раза в два-три. Иначе поршень в конце хода начнёт создавать уже не РАБОТУ, а отрицательную работу — СОПРОТИВЛЕНИЕ. Следовательно СТЕПЕНЬ РАСШИРЕНИЯ определяется в первую очередь максимальным давлением цикла в цилиндре. Чем выше максимальное давление в начале цикла расширения — тем выше можно задирать и степень расширения!
3). Если проанализировать график режима малой мощности — то мы увидим как стремительно падает давление цикла при движении поршня от ВМТ(читай — при увеличении объёма "камеры сгорания"). Даже при беглом рассмотрении графика понятно, что добиваться степени РАСШИРЕНИЯ свыше 10 не имеет особого смысла(борьба будет за сущие проценты КПД двигателя), а свыше 20 — вообще бессмысленно!
4). Высокая степень расширения требует огромного запаса оборудования по прочности. С ростом степени расширения пиковые механические и термические нагрузки стремительно растут, а средние — так же стремительно падают. В результате КПД двигателя растёт всё медленнее, а литровая мощность, как ни странно покажется — СНИЖАЕТСЯ всё опережающими темпами.
На практике при БЫСТРОМ расширении(как и при быстром сжатии) давление и температура падают по адиабатному закону, а не по изотермному, как на моих графиках.
Если вы помните — при степени сжатия 10 давление конца такта сжатия(так называемая "компрессия") равно не 10 атм, а атмосфер этак 17… Так и при обратном БЫСТРОМ расширении в десять раз давление со 100 атмосфер уменьшится не до 10 атмосфер, а до 6-7 и даже чуть меньше. Т.е. уже при степени расширения 10 неиспользованной остаётся не более 5% первоначальной энергии ДАВЛЕНИЯ.
На лицо противоречие — степень СЖАТИЯ нужна высокая(для обеспечения благоприятных условий ВОСПЛАМЕНЕНИЯ топлива), а степень РАСШИРЕНИЯ высокая не нужна.
Да её высокой и нет по факту.
В предыдущей статье я уже показал, что ФАКТИЧЕСКАЯ степень СЖАТИЯ обычной бензинки отличается от ГЕОМЕТРИЧЕСКОЙ в бОльшую сторону раза эдак в два за счёт поджига топлива до ВМТ.
Давайте посмотрим, что происходит в цилиндре обычной бензинки на такте расширения.
Возьмём для анализа стандартный график давления в цилиндре обычной бензинки со СС=8:
Как видно на графике в норме максимальное давление цикла возникает в цилиндре только в районе 25 градусов после ВМТ.
Выпускной клапан на бензинке открывается на 130 градусах после ВМТ:
Итого фактическое расширение, производящее механическую работу, в реальном бензиновом двигателе происходит на участке около 100 градусов по коленвалу.
Это всего около 75% хода поршня.
Получаем ФАКТИЧЕСКУЮ степень РАСШИРЕНИЯ на уровне 6… :(
Если же вспомнить, что значительная часть топлива догорает значительно позднее пика давления — то ФАКТИЧЕСКАЯ степень расширения получается ещё меньше.
ФАКТИЧЕСКАЯ СТЕПЕНЬ РАСШИРЕНИЯ имеет также мало общего с ГЕОМЕТРИЧЕСКОЙ СТЕПЕНЬЮ СЖАТИЯ, как и ФАКТИЧЕСКАЯ СТЕПЕНЬ СЖАТИЯ(о чём я писал в предыдущей статье).
Именно поэтому неплохой рост КПД привычных ДВС наблюдается и при геометрической "степени сжатия" 12-14, когда даже теоретически весь прирост КПД должен исчисляться уже только процентами:
Забавный вывод? Сделаем себе ещё одну зарубку в голове! :)
Живые есть ещё?
Краткий итог первой части статьи — основная часть работы цикла преобразования давления газов выполняется при НАЧАЛЕ расширения рабочего тела, пока давление рабочего тела максимально превышает давление атмосферы. В ходе дальнейшего расширения выполняемая работа стремительно падает к нулю. Фактическая степень расширения рабочего тела свыше 10 имеет мало смысла.
Давайте теперь ещё раз вспомним о том, что нам необходимо каким-то макаром регулировать мощность двигателя. В идеале для изменения генерируемого момента нам нужно менять ОБЪЁМ двигателя — только при таком регулировании процессы сгорания остаются оптимальными на всех режимах — только так можно получить неизменно высокий КПД двигателя.
По факту же мы меняем СТЕПЕНЬ СЖАТИЯ и ОБОРОТЫ двигателя.
Оборотов я касаться не буду — с ними всё более-менее ясно. Чем выше обороты — тем больше рабочих циклов — тем больше вырабатывается мощности при прочих равных. Процессы сгорания при изменении оборотов, конечно, меняются — но не критично.
А вот со степенью сжатия ситуация намного более запутанная.
И неудачная терминология только скрывает истинную картину происходящего.
У современного бензинового двигателя объём потребляемого воздуха меняется в зависимости от нагрузки раз эдак в 5 за счёт дросселирования. У современного дизеля картина та же самая абсолютно — только вместо дросселирования работает турбирование. Можете сами прикинуть как сильно меняется потребление воздуха на холостом ходу и на режиме максимальной мощности у дизеля со степенью сжатия 14 и давлением наддува на уровне 4-5 бар избытка.
Соответственно РЕАЛЬНАЯ СТЕПЕНЬ СЖАТИЯ этих двигателей в процессе работы ЗНАЧИТЕЛЬНО меняется пропорционально количеству воздуха(смеси) в цилиндрах.
Это очень сильно меняет скорость сгорания топлива и, главное, очень заметно рассинхронизирует три основных процесса, протекающих в ДВС:
1). процесс сгорания;
2). процесс преобразования давления образующихся при сгорании газов в момент на поршне;
3). процесс преобразования возвратно-поступательного движения поршня во вращательное движение коленвала;
Про кривошипно-шатунный механизм детально поговорим в следующей статье — давно пора окончательно разобраться, что с ним не так, а сейчас давайте посмотрим — что происходит при изменении наполняемости цилиндра в разрезе рассмотренных выше процессов.
Чем меньше в цилиндр поступает воздуха — тем меньше температура и давление газов в ВМТ. Тем более вяло будет протекать воспламенение и сгорание топливно-воздушных смесей. Пик давления можно выставить в более-менее удачное положение, но тогда начало сгорания приходится отодвигать далеко до ВМТ, а окончание сгорания всё одно вылезет в зону НМТ. Максимальное давление цикла получается невысоким и растянутым во времени, а чем чревато для КПД КШМ затягивание выделения энергии с точки зрения процесса РАСШИРЕНИЯ(и преобразования ДАВЛЕНИЯ газов в РАБОТУ) — разобрано выше.
А ещё есть такие побочные негативные явления как неполное сгорание, повышенные теплопотери и значительное противодавление до ВМТ…
Так что при том, что степень расширения больше 10 не нужна — степень расширения меньше 10 недопустима в условиях реального двигателя, которому приходится работать не только в режиме "педаль в полик"…
Как ни крути — для максимального КПД ДВС идеальна ЦПГ с изменяемым объёмом КС. Читай — с изменяемой "степенью сжатия", что по сути — одно и тоже.
Как этого добиться в рамках конструктива обычного ДВС — тема последующих статей.
Система охлаждения двигателя служит для поддержания нормального теплового режима мотора. При сгорании рабочей смеси в цилиндрах двигателя выделяется большое количество тепла, так как средняя температура газов в цилиндрах работающего двигателя 600-1000*C. Непосредственная естественная отдача тепла в окружающую среду совершенно недостаточна. Этим объясняется необходимость принудительного охлаждения мотора с помощью вспомогательных систем. Нельзя допускать и переохлаждения мотора, так как при этом увеличиваются тепловые потери (уменьшается доля полезного используемого тепла), увеличиваются потери на трение из-за загустения смазки, уменьшается мощность и ухудшается КПД, экономичность двигателя, также ухудшается запуск двигателя в различных погодных условиях. В качестве теплоносителя раньше использовалась вода, теперь это тосол или антифриз.
Влияние теплового режима на износ мотора
Двигатели автомобилей всегда работают с переменными нагрузками, что вызывает изменение их теплового режима. Этому же способствуют частые пуски, продолжительные остановки и сравнительно небольшие пробеги после пуска. Недостаточный тепловой режим вызывает большие износы при пуске двигателей. В период пуска детали двигателя работают с недостаточной смазкой, часто при граничном трении. В начальное время работы мотора конденсации топлива и смывание масляной пленки особенно сильное, коррозионное действие отработавших газов наибольшее. Износы при пуске холодного двигателя в 1,5-2 раза больше, чем при пуске его с предварительным подогревом. Повышение теплового зазора (в отличие от нормального) также влечет за собой увеличение износов и ухудшение экономичности двигателя. Возникают местные перегревы, масло разжижается, сгорает, увеличивается абразивный износ.
Зазоры между поршнем и стенкой цилиндра, особенно у двигателей, имеющих поршни из алюминиевых сплавов, уменьшаются, увеличивается расход мощности на трение. Протекание рабочих процессов-смесеобразование, сгорание-становится неблагоприятным (с детонацией), в результате мощность двигателя падает, удельный расход топлива увеличивается. Нормальный тепловой режим мотора может быть нарушен по следующим причинам, связанным с неисправностями системы охлаждения: недостаток охлаждающей жидкости в системе, которая при работающем двигателе может вытечь из-за повышенного давления; наличие накипи в системе, которая уменьшает объем жидкости и значительно ухудшает теплообмен; нарушение работы клапонов пробки радиатора; недостаточная интенсивность работы вентилятора.
Кроме того, перегрев двигателя может быть в результате позднего момента зажигания смеси в цилиндре, обеднения рабочей смеси и по ряду других причин, связаных с движением автомобиля. Естественно, что все элементы системы охлаждения двигателей нуждаются в периодической проверки их технического состояния.
Стабильность работы любого автомобиля зависит от условий эксплуатации и технических характеристик двигателя внутреннего сгорания. Такой показатель, как рабочая температура двигателя, зависит не только от условий окружающей среды, но и от многих эксплуатационных факторов. Если данный параметр соответствует расчетной величине, т. е. находится в допустимом диапазоне, силовой агрегат обеспечивает максимальную отдачу энергии в течение длительного времени. При оптимальных режимах двигателя внутреннего сгорания создаются лучшие условия для функционирования всех систем автомобиля.
Какая должна быть рабочая температура двигателя
При сгорании топливных смесей в цилиндрах мотора выделяется огромное количество тепла. В камерах сгорания температура достигает более 2000°С. В конструкцию силовых агрегатов включена система охлаждения, элементы которой отводят тепло от рабочих узлов. Благодаря эффективной работе элементов охлаждающей системы ДВС, тепловой режим поддерживается в оптимальных границах от +80 до 90°С. Существуют отдельные типы моторов, для которых нормы расширены до 110°С, чаще всего это механизмы с воздушным охлаждением.
При работе двигателя в оптимальном температурном режиме создаются наилучшие условия для:
- Полноценного наполнения цилиндров топливовоздушными смесями.
- Стабильности работы силового агрегата во время движения.
- Надежной работы механизмов и систем транспортного средства.
Отклонения от нормы температурных режимов силовых агрегатов
Показания температуры внутри двигателя можно увидеть на приборе, расположенном в салоне любого современного автомобиля.
К чему приводит превышение нормы рабочей температуры в двигателе? При сверхвысоких температурах технологические тепловые зазоры металлических элементов нарушаются. Это вызывает следующие негативные изменения в работе силового агрегата:
- ускоренный износ рабочих узлов и деталей;
- деформации и поломки механизмов;
- уменьшение мощности двигателя;
- возникновение детонации;
- несанкционированное воспламенение горючего.
Что означает понятие – низкая температура двигателя? Если в процессе движения автомобиля стрелка прибора находится ниже рекомендуемого уровня температурного режима, имеются веские основания для тревоги. Непрогретая топливовоздушная смесь конденсируется и оседает на стенках цилиндров. При попадании конденсата в масляный поддон происходит разжижение моторного масла. Технических свойства и характеристики смазочного материала резко ухудшаются. При длительной работе в низком тепловом режиме узлы и детали силового агрегата быстро изнашиваются и приходят в негодность.
Рабочая температура бензинового двигателя
Работа каждого двигателя внутреннего сгорания сопровождается выделением тепла. Рабочие элементы мотора функционируют в условиях высоких температурных режимов.
При опускании поршня в самую нижнюю точку затрачивается большое количество энергии, одновременно с этим выделяется тепло. Элементы силовых агрегатов изготовлены из металла. Как известно, при нагревании данный материал расширяется. При изготовлении узлов и деталей двигателей предусмотрены специальные тепловые зазоры, рассчитанные на нагрев изделий до оптимальных значений. Для предотвращения заклиниваний в конструкцию мотора включена система охлаждения двигателя.
Какая рабочая температура бензинового двигателя является оптимальной? Рабочая температура бензиновых силовых агрегатов как карбюраторного, так и инжекторного, не должна превышать +90°С. Задача охлаждающей жидкости – сохранять постоянную температуру двигателя на должном уровне.
Важно: После включения мотора при дальнейшем движении транспортного средства оператор, постоянно держит под контролем значения рабочей температуры ДВС. Отклонения свидетельствуют о проблемах, появившихся в охлаждающей системе:
- Повышение температуры в бензиновом двигателе приводит к закипанию и быстрому испарению ОЖ.
- При уменьшении ее количества температура мотора стремительно возрастет.
- Под воздействием высоких температур металл начнет деформироваться и расширяться в объеме.
- Размеры деталей будут сильно изменены.
- В результате, произойдет заклинивание мотора.
Чтобы восстановить работоспособность такого двигателя потребуется дорогостоящий капитальный ремонт автомобиля.
К чему приводит переохлаждение мотора
Такое явление, как переохлаждение также негативно сказывается на качестве работы силового агрегата. Чаще всего это случается зимой или при эксплуатации транспортного средства в сложных климатических условиях крайнего севера.
Рабочая температура двигателя зимой может быть резко снижена в процессе движения авто. При этом потоки охлажденного воздуха обдувают радиатор и весь силовой агрегат. В результате, охлаждающая жидкость резко понижает температуру мотора, даже, если он работает на полных нагрузках.
Понижение рабочей температуры мотора опасно по следующим причинам:
- При переохлаждении системы питания в карбюраторе обмерзает отверстие жиклера, через которое поступает воздух, в результате свечи зажигания заливаются бензином. Чтобы продолжить движение, водителю придется ждать высыхания свечей.
- При минусовых температурах окружающей среды в автомобилях, работающих на воде, охлаждающая жидкость (ОЖ) замерзает в трубках радиатора. Прекращение циркуляции ОЖ приводит к перегреву мотора. Опытные автовладельцы устанавливают специальные тканевые перегородки или защитные жалюзи на решетку радиатора.
- Ухудшение качества или отсутствие отопления салона автомобиля в зимний период может привести к нарушениям управления транспортным средством.
Рабочая температура дизельного двигателя
Температура дизеля зависит от следующих факторов:
- тип мотора;
- период задержки воспламенения топливовоздушной смеси;
- качество, равномерность сгорания топлива.
Считается, что оптимальная рабочая температура двигателя должна находиться в пределах 70 – 90°С. Допустимый максимум для дизельных силовых агрегатов, работающих под усиленными нагрузками, равен +97°С, не более.
Совет: Если дизельный двигатель исправен, перед началом движения рекомендуется прогреть охлаждающую жидкость до температуры не менее +40°С. При сильных морозах за бортом автомобиля мотор может начинать прогреваться только при движении. На первых порах рекомендуется включить пониженную передачу. В дальнейшем, нагрузка на движок должна повышаться постепенно, только после поднятия температуры хотя бы до 80°С.
Краткое описание принципа действия системы охлаждения
В данную систему входят следующие рабочие элементы:
- Расширительная емкость.
- Радиатор охлаждения.
- Патрубки верхний и нижний.
- Рубашки охлаждения блока цилиндров.
- Соединительные шланги.
- Насос ОЖ.
- Термостат.
- Радиатор отопителя салона.
- Охлаждающая жидкость.
Схема работы системы охлаждения силового агрегата:
Как видно из схемы, в охлаждающей системе происходят следующие процессы:
Методы восстановления нормальной температуры ДВС
При обнаружении завышения данного параметра, прежде всего, нужно остановить автомобиль, заглушить мотор и начать обследование:
- Убедиться в достаточном объеме антифриза в системе охлаждения.
- При необходимости восполнить необходимое количество.
- Жидкость заливается непосредственно в радиатор охлаждения (при этом необходимо соблюдать осторожность, чтобы не обжечься горячим составом).
- Осмотреть систему, чтобы исключить возможные протечки.
- Продиагностировать радиатор на предмет герметичности.
Если восполнение объема антифриза не дало ожидаемого результата, температура двигателя продолжает подниматься, это означает, что мотор нуждается в компьютерной диагностике в условиях специализированного сервисного центра.
Среди наиболее частых отказов в системе охлаждения ДВС можно выделить следующие пункты:
- сбои в работе клапана термостата;
- поломки электрического вентилятора;
- чрезмерное засорение трубок радиатора;
- поломка клапана крышки расширительного бачка;
- протечки в корпусе насоса;
- нарушение герметичности системы.
Тепловой режим двигателя считается оптимальным при его значениях, находящихся в пределах от +80 до +90 °С. При таких условиях мотор работает стабильно. При этом обеспечена существенная экономия горючего материала, детали и узлы силового агрегата получают минимальный износ, независимо от нагрузок на двигатель и особенностей работы транспортного средства.
Важно: Чтобы рабочая температура ДВС находилась в заданных пределах, необходимо проводить регулярную диагностику системы охлаждения силового агрегата.
Читайте также: