Схема турбины камаз 6520
На двигателях применяются системы управления топливоподачей с механическими или электронными регуляторами (см. таблицу 1).
Применяемые в составе двигателей уровня Евро-2 механические регуляторы рядных ТНВД фирмы БОШ встроены в насос, органы управления ими показаны на рисунке 39.
ЭЛЕКТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ
Двигатели КАМАЗ уровня Евро-3 оснащаются электронными системами управления двигателем (ЭСУД), где вместо традиционных ТНВД с механическим регулятором применяются:
- ТНВД фирмы БОШ типа 7100 с электронным регулятором;
ЭСУД предназначена для управления цикловой подачей топлива двигателя в зависимости от режимов работы двигателя, его температурного состояния, регулировочных характеристик и параметров окружающей среды. Система обеспечивает выполнение следующих функций:
- нормирование пусковой подачи топлива;
- коррекция цикловой подачи в зависимости от давления наддувочного воздуха;
- ограничение цикловой подачи топлива при достижении предельной температуры охлаждающей жидкости;
- управление реле блокировки стартера;
- ограничение максимальной скорости автомобиля;
- обеспечение аварийного останова двигателя;
- осуществление диагностических функций и передача диагностической информации через диагностический разъем по линии K-line и CAN;
- обеспечение взаимодействия с другими системами управления автомобиля;
- обеспечение аварийно-предупредительной сигнализации и защиты и др.
Полный перечень выполняемых ЭСУД функций определяется при проектировании изделия, на котором применен двигатель.
В состав ЭСУД входят:
- электронный блок управления (ЭБУ);
- жгуты проводов в комплекте с датчиками, переключателями и разъемами для подключения устройств диагностирования системы в условиях эксплуатации;
- исполнительные механизмы (привод рейки ТНВД, клапан аварийного останова двигателя).
Элементы ЭСУД и их предназначение на двигателях КАМАЗ с ТНВД типа Р7100.
Размещение элементов системы и прокладка моторного жгута проводов представлены на рисунке 44.
В системе используются следующие элементы:
Датчик частоты вращения распределительного вала устанавливается в специальное отверстие, выполненное в картере маховика. Для формирования сигналов датчика в качестве индуктора применяется специальное колесо с шестнадцатью пазами.
Электронный блок управления устанавливается в кабине автомобиля.
Исполнительными механизмами системы являются электромагнит перемещения рейки ТНВД и втягивающий электромагнит 24В клапана аварийного останова двигателя.
Электромагнит рейки ТНВД с датчиком положения служат для установки рейки ТНВД в положение, соответствующее заданному режиму работы двигателя. Конструкция и характеристики электромагнита обеспечивают высокую точность и быстродействие, обеспечивая регулирование двигателя в зависимости от условий работы.
Втягивающий электромагнит 24В клапана аварийного останова двигателя служит для прекращения подачи топлива в ТНВД при возникновении аварийных ситуаций (например, заклинивание рейки ТНВД, чрезмерное превышение частоты вращения коленчатого вала и т.д.). Устанавливается в специальный корпус клапана вместе с датчиком температуры топлива.
После включения зажигания тестируется лампа диагностики двигателя, в ходе которого она загорается на три секунды. Если лампа диагностики продолжает гореть, либо она загорается при работе двигателя, это означает, что в ЭСУД возникла неисправность и для ее устранения необходимо обратиться в сервисный центр. Информация о неисправностях хранится в ЭБУ и может быть прочитана либо при помощи диагностического прибора, либо при помощи лампы диагностики. После устранения неисправности лампа диагностики гаснет.
Рис. 44 - Установка жгута проводов:
1 - датчик частоты вращения коленчатого вала (основной), 2 - датчик частоты вращения распределительного вала (вспомогательный), 3 - датчик температуры охлаждающей жидкости, 4 - датчик температуры топлива, 5 - датчик давления и температуры наддувочного воздуха, 6 - жгут системы управления двигателем, 7 - электромагнит рейки ТНВД, 8 - втягивающий электромагнит 24В клапана аварийного останова
Установленный в кабине изделия включатель режима диагностики имеет три положения - среднее (фиксированное), верхнее и нижнее (нефиксированные). В верхнем и нижнем положении электронный блок управления двигателем находится в режиме диагностики.
Диагностика двигателя проводится нажатием и удерживанием включателя в верхнем или нижнем нажатом положении более 2 секунд. После отпускания включателя лампа диагностики промигает блинк-код неисправности двигателя в виде нескольких длинных вспышек (первый знак блинк-кода) и нескольких коротких вспышек (второй знак блинк-кода).
При следующем нажатии на включатель лампа будет мигать блинк-код следующей неисправности. Таким образом, выводятся все неисправности, хранящиеся в электронном блоке. После вывода последней запомненной неисправности блок начинает заново выводить первую неисправность.
Для стирания выводимых лампой диагностики блинк-кодов неисправностей из памяти блока управления при нажатом включателе режима диагностики включите зажигание и после этого удерживайте включатель режима диагностики еще около 5 секунд.
Пример - при физической ошибке датчика температуры наддувочного воздуха (блинк-код 32) лампа диагностики промигает 3 длинные вспышки, пауза, 2 короткие вспышки.
Перечень возможных ошибок и неисправностей, их блин-коды и рекомендуемые действия при этом приведен в таблице 4
Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.
Но увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.
Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.
УСТРОЙСТВО ТУРБОКОМПРЕССОРА
схема турбокомпрессора
Устройство турбокомпрессора (рис.1):
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).
Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.
Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.
Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.
Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.
В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.
ПРИНЦИП РАБОТЫ
1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.
2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.
3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.
5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.
Как работает турбина — видео:
Турбина КАМАЗ ЕВРО 2
Турбокомпрессор камаз — все о нём
Модели турбокомпрессоров, применяемые на двигателях КАМАЗ.
В системах наддува дизельных двигателей КАМАЗ применяют одноступенчатые турбокомпрессоры, состоящие из центробежного компрессора и радиальной центробежной турбины. Так как работа двигателя и турбокомпрессора согласована, то можно устанавливать определенный тип турбокомпрессора только на тот двигатель, для которого он предназначен.
На двигатель КАМАЗ 7403.10 устанавливаются два турбокомпрессора ТКР 7Н-1. В качестве запасных частей этот двигатель разрешено комплектовать турбокомпрессорами: ТКР-7Н1-СТ производства ООО “Сервис-Турбо”, ТКР 7Н-1К производства НПО “Турботехника”, ТКР-7ТВ-03 производства ООО “Турбо-Веста”.
На двигатели КАМАЗ 740.11-240, 740.13-260, 740.14-300 устанавливаются два турбокомпрессора: ТКР 7С-9 или К27-115.
Описание системы газотурбинного наддува и охлаждения наддувочного воздуха.
На всех автомобилях КАМАЗ, кроме комплектаций с двигателями моделей 7403.10, 740.11-240, 740.13-260, 740.14-300, применяется система охлаждения надувочного воздуха (ОНВ).
Система газотурбинного наддува и ОНВ обеспечивает за счет использования части энергии отработавших газов подачу предварительно сжатого и охлажденного воздуха в цилиндры двигателя. Это позволяет увеличить плотность заряда воздуха, поступающего в цилиндры, и в том же рабочем объеме сжечь большее количество топлива, т.е. повысить литровую мощность двигателя.
Рисунок 1 — Схема системы газотурбинного наддува и ОНВ.
1 — теплообменник ОНВ: 2 — радиатор системы охлаждения; 3 — вентилятор; 4 — двигатель; 5,6- турбокомпрессоры
Воздух в центробежный компрессор турбокомпрессора поступает из воздухоочистителя, сжимается и подается под давлением в теплообменник ОНВ, и затем охлажденный воздух поступает в двигатель.
Турбокомпрессоры устанавливаются на выпускных патрубках по одному на каждый ряд цилиндров. Выпускные коллекторы и патрубки изготовлены из высокопрочного чугуна. Уплотнение газовых стыков между установочными фланцами турбины турбокомпрессоров, выпускных патрубков и коллекторов осуществляется прокладками из жаростойкой стали. Газовый стык между выпускным коллектором и головкой цилиндра уплотняется прокладкой из асбостального листа, окантованного лентой из жаростойкой стали. Прокладки являются деталями одноразового использования и при переборках системы подлежат замене.
Выпускные коллекторы крепятся к головкам цилиндров болтами. Для компенсации угловых перемещений, возникающих при нагреве, под головки болтов крепления выпускного коллектора устанавливаются специальные сферические шайбы.
Впускные коллекторы и патрубки выполняются литыми из алюминиевого сплава и соединяются между собой при помощи болтов. Стыки между коллекторами и патрубками уплотняются паронитовыми прокладками.
Рисунок 2 — Схема системы газотурбинного наддува (без ОНВ)
1 — турбокомпрессоры; 2 — патрубок выпускной левый; 3 — патрубок впускной левый; 4 — коллектор выпускной левый; 5 — коллектор впускной левый; 6 — патрубок объединительный; 7 — коллектор впускной правый; 8 — коллектор выпускной правый; 9 — патрубок выпускной правый; 10 — патрубок впускной правый.
Смазка подшипников турбокомпрессоров осуществляется из системы смазки двигателя через фторопластовые трубки с металлической оплеткой. Слив масла из турбокомпрессоров осуществляется по стальным трубкам сильфонной конструкции в картер двигателя.
На рисунке 2 представлена система газотурбинного наддува без ОНВ. Принцип работы такой системы тот же, что и у представленной выше, за исключением того, что сжатый воздух, подаваемый в цилиндры двигателя, не охлаждается.
Конструкция турбокомпрессоров, применяемых на двигателях КАМАЗ.
Рисунок 3 — Турбокомпрессор ТКР 7Н-1
1 — подшипник; 2 — экран; 3 — корпус компрессора; 4 — диффузор; 5 — уплотнительное кольцо; 6 — гайка; 7 — маслоотражатель; 8 — колесо компрессора; 9 — маслосбрасывающий экран; 10 — крышка; 11 — корпус подшипников; 12 — фиксатор; 13 — переходник; 14 — прокладка; 15 — экран турбины; 16 — колесо турбины с валом; 17 — корпус турбины; 18 — уплотнительное кольцо.
В конструкции турбокомпрессора ТКР 7Н-1 (рисунок 3) применяется изобарный однозаходный корпус турбины из высокопрочного чугуна и в качестве подшипника — бронзовая моновтулка качающегося типа.
Ротор турбокомпрессора состоит из колеса турбины с валом 16, колеса компрессора 8 и маслоотражателя 7, закрепленных на валу гайкой 6. Ротор вращается в подшипнике 1, удерживающемся от осевого и радиального перемещений фиксатором 12, который с переходником 13 является одновременно и маслоподводящим каналом.
Ротор и колесо компрессора динамически балансируются с высокой точностью на специальных балансировочных станках.
В корпусе подшипника 11 устанавливаются стальные крышки 10 и маслосбрасывающий экран 9, который вместе с упругими разрезными кольцами 5 предотвращает течь масла из полости корпуса подшипника.
Для уменьшения теплопередачи от корпуса турбины к корпусу подшипника между ними установлен чугунный экран 15 и окантованная асбостальная прокладка 14.
Корпус компрессора и корпус турбины крепятся к корпусу подшипников при помощи болтов и планок. Болты крепления корпусов компрессоров М6 необходимо затягивать крутящим моментом 4,9…7,8 Н-м (0,5…0,8 кгс-м), а болты крепления корпусов турбин М8 — 23,5…29,4 Н-м (2,4…3,0 кгс-м).
В конструкции турбокомпрессора ТКР 7С-6 (ТКР7С-9) (рисунок 4) применяется двухзаходный корпус турбины 7 из высокопрочного чугуна.
Ротор турбокомпрессора состоит из колеса турбины 9 с валом 10, колеса компрессора 1, маслоотражателя 16 и втулки 15, закрепленных на валу гайкой 19.
Ротор вращается в подшипниках 5, представляющих собой плавающие вращающиеся втулки. Осевые перемещения ограничиваются упорным подшипником 4, установленным между корпусом подшипников 3 и крышкой 2. Подшипники выполняются из бронзы.
Рисунок 4 — Турбокомпрессор ТКР 7С-6:
1 — корпус компрессора; 2 — крышка; 3 — корпус подшипников; 4 — подшипник упорный; 5 — подшипник; 6 — кольцо стопорное; 7 — корпус турбины; 8 — кольцо уплотнительное; 9 — колесо турбины; 10 — вал ротора; 11 — экран турбины; 12, 17 — планки; 13, 18 — болты; 14 — маслосбрасывающий экран; 15 — втулка; 16 — маслоотражатель; 19 — гайка; 20 — колесо компрессора; 22 — диффузор; 24 — переходник; 25 — прокладка, 21, 23 — кольцо уплотнительное (резиновое).
Корпус подшипников турбокомпрессора, с целью уменьшения теплопередачи от турбины к компрессору, выполнен составным из чугунного корпуса и крышки из алюминиевого сплава. Для уменьшения теплопередачи между корпусом турбины и корпусом подшипников устанавливается экран турбины 11 из жаростойкой стали. В корпусе подшипников устанавливается маслосбрасывающий экран 14, который вместе с упругими уплотнительными кольцами 8 предотвращает утечку масла из полости корпуса.
Корпусы турбины и компрессора крепятся к корпусу подшипников с помощью болтов 13, 18 и планок 12, 17. Моменты затяжки болтов такие же, как у ТКР 7Н-1. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь облегчает установку ТКР на двигателе.
Турбокомпрессоры ТКР 7С-6 и ТКР 7С-9 отличаются между собой только корпусами турбин — они имеют различную пропускную способность.
Турбокомпрессоры S2B/7624TAE/0,76D9 правый и левый (обозначение левого турбокомпрессора 1274 970 0003, правого — 1274 970 0004) не имеют конструктивных отличий, отличаются только разворотом корпусов турбины и компрессора.
Корпус турбины крепится к корпусу подшипников при помощи болтов и планок, а корпус компрессора — при помощи стопорного кольца. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь обеспечивает взаимозаменяемость левого и правого турбокомпрессоров. При необходимости производить разворот корпуса компрессора только при ослаблении натяга стопорного кольца.
Турбокомпрессоры К27-115 правый и левый (обозначение правого турбокомпрессора 399 0023 115-01, левого — 399 0023 115-02) не имеют конструктивных отличий, отличаются только разворотом корпусов турбины и компрессора.
К27-115 имеет конструкцию, аналогичную ТКР 7С-9, и по установочным и присоединительным размерам он унифицирован с ТКР 7С-9.
Корпус турбины и корпус компрессора крепятся к корпусу подшипников при помощи болтов и планок. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь обеспечивает взаимозаменяемость левого и правого турбокомпрессоров.
Допустимые параметры турбокомпрессоров при эксплуатации приведены в таблице 1.
Турбокомпрессоры дизелей КАМАЗ 740.11-240, 740.13-260, 740.14-300
Система газотурбинного наддува, за счет использования части энергии отработавших газов, обеспечивает подачу предварительно сжатого воздуха в цилиндры двигателя
Наддув позволяет увеличить плотность воздуха, поступающего в цилиндры, в том же рабочем объеме сжечь большее количество топлива и, как следствие, повысить литровую мощность двигателя.
Система газотурбинного наддува двигателя состоит из двух взаимозаменяемых турбокомпрессоров, выпускных и впускных коллекторов и патрубков (см. рисунок).
Турбокомпрессоры устанавливаются на выпускных патрубках по одному на каждый ряд цилиндров.
Выпускные коллекторы и патрубки изготовлены из высокопрочного чугуна ВЧ50.
Уплотнение газовых стыков между установочными фланцами турбины турбокомпрессоров, выпускных патрубков и коллекторов осуществляется прокладками из жаростойкой стали.
Прокладки являются деталями одноразового использования и при переборках системы подлежат замене.
Газовый стык между выпускным коллектором и головкой цилиндра уплотняется прокладкой из асбостального листа, окантованного металлической плакированной лентой
Выпускные коллекторы выполняются цельнолитыми, крепятся к головкам цилиндров болтами и контрятся замковыми шайбами.
Для компенсации угловых перемещений головки болта крепления выпускного коллектора, возникающих при нагреве, под головку болта устанавливается специальная сферическая шайба.
Впускные коллекторы и патрубки выполняются литыми из алюминиевого сплава АК9ч и соединяются между собой при помощи болтов. Стыки между коллекторами и патрубками уплотняются паронитовыми прокладками.
Для выравнивания давления между двумя рядами цилиндров впускные коллекторы соединяются объединительным патрубком.
Система турбонаддува двигателя должна быть герметична.
При нарушении герметичности выпускного тракта снижается частота вращения ротора турбокомпрессора, а следовательно уменьшается количества воздуха, нагнетаемого в цилиндры, что приводит к увеличению теплонапряженности деталей, снижению мощности и ресурса двигателя.
Негерметичность впускного тракта приводит также к вышеперечисленным недостаткам и "пылевому" износу цилиндропоршневой группы, следовательно, преждевременному выходу двигателя из строя.
Смазка подшипников турбокомпрессоров осуществляется от системы смазки двигателя через фторопластовые трубки с металлической оплеткой.
Слив масла из турбокомпрессоров осуществляется через стальные трубки в картер двигателя. Трубки слива между собой соединяются резиновым рукавом, который стягивается хомутами.
Воздух в центробежный компрессор поступает из воздухоочистителя, сжимается и подается под давлением во впускной патрубок двигателя.
Выпускной патрубок компрессора и впускной патрубок коллектора между собой соединяются теплостойким резиновым рукавом, который стягивается хомутами.
Турбокомпрессоры ТКР7С-9 иТКР7Н-1 являются модификациями базовых моделей турбокомпрессоров ТКР7С и ТКР7Н соответственно.
В тексте и рисунках приведены описания и изображения базовых моделей, которые являются общими для всех модификаций ТКР.
Турбокомпрессор ТКР7С-9 состоит из центростремительной турбины и центробежного компрессора, соединенных между собой подшипниковым узлом.
Турбина с двухзаходным корпусом 7 из высокопрочного чугуна ВЧ40 преобразовывает энергию выхлопных газов в кинетическую энергию вращения ротора турбокомпрессора, которая затем в компрессорной ступени превращается в работу сжатия воздуха.
Ротор турбокомпрессора ТКР7С состоит из колеса турбины 9 с валом 10, колеса компрессора 20, маслоотражателя 16 и втулки 15, закрепленных на валу гайкой 19.
Колесо турбины отливается из жаропрочного сплава по выплавляемым моделям и сваривается с валом из стали трением.
Колесо компрессора с загнутыми по направлению вращения назад лопатками выполняется из алюминиевого сплава и после механической обработки динамически балансируется до величины 0,4 г.мм.
Подшипниковые цапфы вала ротора закаливаются ТВЧ на глубину 1-1,5 мм до твердости 52-57 HRC3.
После механической обработки ротор динамически балансируется до величины 0,5 г.мм.
При значении радиального биения не более 0,03 мм на детали ротора наносятся метки в одной плоскости и ротор допускается на сборку турбокомпрессора.
При установке ротора на корпус подшипников необходимо совместить метки на деталях ротора.
Ротор вращается в подшипниках 5, представляющих собой плавающие вращающиеся втулки.
Осевые перемещения ротора ограничиваются упорным подшипником 4, защемленным между корпусом подшипников 3 и крышкой 2. Подшипники выполняются из бронзы БрО10С10.
Корпус подшипников турбокомпрессора с целью уменьшения теплопередачи от турбины к компрессору выполнен составным из чугунного корпуса ВЧ50 и крышки из алюминиевого сплава.
Для уменьшения теплопередачи между корпусом турбины и корпусом подшипников устанавливается экран 11 из жаростойкой стали.
В корпусе подшипников устанавливается маслосбрасывающий экран 14, который вместе с упругими разрезными кольцами 8 предотвращает утечку масла из полости корпуса.
Для устранения утечек воздуха в соединении "корпус компрессора - корпус подшипников" устанавливается резиновое уплотнительное кольцо 21.
Корпусы турбины и компрессора крепятся к корпусу подшипников с помощью болтов 12, 17 и планок 13, 18. Такая конструкция позволяет устанавливать их под любым углом друг к другу, что в свою очередь облегчает установку ТКР на двигатель.
Турбокомпрессор ТКР7Н
В отличие от турбокомпрессора ТКР7С, в конструкции турбокомпрессора ТКР7Н применяется изобарный однозаходный корпус турбины и в качестве подшипника бронзовая моновтулка качающегося типа.
Ротор турбокомпрессора состоит из колеса турбины с валом 16, колеса компрессора 8 и маслоотражателя 7, закрепленных на валу гайкой 6.
Ротор вращается в подшипнике 1, удерживающемся от осевого и радиального перемещений фиксатором 12, который с переходником 13 является одновременно и маслоподводящим каналом.
В корпусе подшипника 11 устанавливаются стальные крышки 10 и маслосбрасывающий экран 9, который вместе с упругими разрезными кольцами 5 предотвращает течь масла из полости корпуса подшипника.
Для уменьшения теплопередачи от корпуса турбины к корпусу подшипника между ними установлен чугунный экран 15 и две стальные прокладки 14 или чугунный экран 15 и окантованная асбостальная прокладка 14.
Ввиду того, что ротор турбокомпрессора балансируется с высокой точностью, полная разборка и обслуживание агрегата должны осуществляться на специализированных предприятиях, имеющих необходимое оборудование, инструменты и приборы.
На двигатель 740.11-240 устанавливается турбокомпрессор ТКР 7Н-1 или ТКР 7С-9
На двигатели 740.13-260 и 740.14-300 устанавливается турбокомпрессор S2B/7624TAE/1.00 D9
Технические характеристики турбокомпрессора ТКР7С-9
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,2
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 80 (0,8)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 90000-100000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 1023 (750)
- - допускаемая без ограничения во времени: 973 (700)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Технические характеристики турбокомпрессора ТКР7Н-1
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,18
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 60 (0,6)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 80000-90000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 973 (700)
- - допускаемая без ограничения во времени: 923 (650)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Технические характеристики турбокомпрессора S2B/7624T АЕ/1.00 D9
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,22
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 110(1,1)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 90000-100000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 1023 (750)
- - допускаемая без ограничения во времени: 973 (700)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Рекомендуемые режимы работы двигателя с турбонаддувом
Во избежание подсоса масла из турбокомпрессоров и попадания его в цилиндры двигателя, на проточные части компрессора и турбины, не рекомендуется длительная, более 10 минут, работа двигателя на режиме холостого хода с частотой вращения коленчатого вала менее 700 мин -1 .
Это приводит к закоксовыванию поршневых колец, загрязненности проточной части компрессора и нагарообразованию на проточной части турбины.
При вынужденной работе двигателя на оборотах холостого хода (прогрев, накачка воздуха в баллоны тормозной системы и т.п.) необходимо поддерживать частоту вращения коленчатого вала не менее 1000-1200 мин -1 .
Перед остановкой двигателя после его работы под нагрузкой, необходимо установить режим холостого хода длительностью не менее 3-х минут во избежание перегрева подшипника турбокомпрессора и закоксовывания ротора.
Резкая остановка двигателя после работы под нагрузкой запрещается.
Потеря мощности, дымление, высокий расход топлива, перегрев двигателя, высокая температура выхлопных газов, утечки масла из турбокомпрессора - это симптомы неполадок в работе систем, связанных с турбонаддувом.
Однако, всё это часто несправедливо относят к неисправности турбокомпрессора, так как дефекты других деталей двигателя приводят к аналогичным симптомам.
Так как турбокомпрессор самонастраивающийся агрегат двигателя, только механические неисправности или загромождение воздушных и газовых каналов из-за грязи и посторонних предметов ухудшают его работу.
Перед остановкой двигателя после его работы под нагрузкой, необходимо установить режим холостого хода длительностью не менее 3-х минут во избежание перегрева подшипника турбокомпрессора и закоксовывания ротора.
Резкая остановка двигателя после работы под нагрузкой запрещается.
Ремонт турбокомпрессора
При нарушении герметичности в соединении между установочным фланцем турбины и выпускным патрубком коллектора замените стальную прокладку.
При появлении посторонних шумов, а также при повышенном дымлении и снижении мощности двигателя, связанных с техническим состоянием турбокомпрессора, отсоедините от турбокомпрессора приемную трубу глушителя и проверьте легкость вращения ротора.
При тугом вращении, заклинивании или задевании ротора о корпусные детали снимите турбокомпрессор.
Снимайте турбокомпрессор в такой последовательности:
- - снимите воздухоочиститель (при снятии левого ТКР), соединительные патрубки, тройник;
- - отсоедините трубку подвода масла к ТКР;
- - ослабьте хомуты крепления соединительных патрубков корпуса компрессора;
- - расконтрите и выверните болты выпускного коллектора, сместите выпускной коллектор назад, разъедините магистраль слива масла, снимите выпускной коллектор с ТКР в сборе.
Примечание. Для удобства последующего монтажа перед разборкой ТКР на корпусах турбины и компрессора нанести метки спаренности с корпусом подшипников;
- - выверните шесть болтов крепления турбины и снимите корпус компрессора вместе с корпусом подшипников;
- - выверните восемь болтов крепления корпуса компрессора и снимите его;
- - промойте корпус компрессора и экран в дизельном топливе, удалите отложения;
- - промойте корпус подшипника со стороны компрессора и удалите с поверхностей лопаток и корпуса отложения.
Внимание! Во избежание повреждения поверхностей лопаток и нарушения балансировки ротора не допускается использовать для удаления отложений металлические предметы и исправлять погнутые лопатки;
- проверьте целостность лопаток колес и отсутствие на них погнутостей. При наличии поврежденных лопаток замените турбокомпрессор.
Внимание! Ввиду того, что ротор турбокомпрессора при сборке балансируется с высокой точностью, разборка ротора ТКР не допускается.
Полная разборка турбокомпрессора осуществляется на специализированных предприятиях, имеющих необходимое оборудование и приборы;
- - соберите турбокомпрессор в обратной последовательности. Установку корпусов компрессора и турбины относительно корпуса подшипников проводите по меткам;
- - затяните болты крепления корпуса компрессора с крутящим моментом 4,9-7,8 Н.м (0,5-0,8 кгс.м), болты крепления корпуса турбины с крутящим моментом 23,5-29,4 Н.м (2,4-3,0 кгс.м);
- - проверьте легкость вращения ротора и отсутствие задевания его о корпусные детали при крайних его осевых и радиальных положениях;
- - установите выпускной коллектор, затяните болты крепления с крутящим моментом 43,1-54,9 Н.м (4,4-5,6 кгс-м), законтрите болты.
Возможные неисправности турбонаддува и способы устранения
Уменьшение мощности двигателя, черный дым
- грязный воздушный фильтр
Очистите или замените воздушный фильтр
- загромождение подвода воздуха к компрессору ТКР
Удалите загромождение или замените дефектные детали
- утечка на трассе подвода воздуха в компрессор ТКР
Затяните болты хомутов, при необходимости замените рукава
- утечка на трассе отвода воздуха от компрессора ТКР во впускную систему
Затяните болты хомутов, при необходимости замените рукава и прокладки
- закоксовывание ротора турбины, узла уплотнения ТКР
Ремонт в специализированной мастерской или замена ТКР
- плохая вентиляция картера
Устраните сопротивление, при необходимости замените неисправные детали
Решение определенных задач грузового транспорта определяется развиваемой мощностью. Турбокомпрессор КамАЗ позволяет увеличить рабочие возможности автомобиля, оставаясь одним из самых эффективных способов, несмотря на старания ученых и конструкторов в продвижении потенциально новых идей. Рассмотрим характеристики и особенности этого приспособления.
Назначение
Особенности
Более активное и плотное сгорание топлива существенно уменьшает выброс токсичных отработанных газов. Также снижается количество дыма, благодаря уменьшению остаточных твердых продуктов (сажи). Проще говоря, увеличивается общая экологическая безопасность мотора.
1 – тепловой обменник; 2 – радиатор охлаждающей системы; 3 – вентилятор; 4 – мотор; 5 и 6 – турбокомпрессоры.
Устройство
Турбокомпрессоры КамАЗ имеют простую конструкцию. По сути, в этом приспособлении взаимодействуют два элемента (компрессор центробежного типа и газовая турбина). Первая комплектующая часть состоит из таких деталей
- остова в виде улитки;
- колеса с рабочими лопатками специфической конфигурации;
- отверстия, через которое воздух поступает, подаваясь посредством диффузора во впускной коллектор мотора.
Газовая турбина имеет аналогичное строение, только вместо воздуха, в нее подаются отработанные газы, которые выводятся в систему выхлопа.
Колеса обоих элементов соединяются при помощи центрального корпуса, а крутящая сила передается посредством валика. Следовательно, энергия для работы агрегата продуцируется из отработанных газов.
1 – подшипник; 2 – экранная часть; 3 – корпус; 4 – диффузор; 5 – кольцо уплотнения; 6 – гайка; 7 – отражатель масляный; 8 – компрессорное колесо; 9 – экран маслосброса; 10 – заслонка; 11 – остов подшипников; 12 – крепеж; 13 – переходник; 14 – прокладка; 15 – турбинный экран; 16 – колесо; 17 – корпус; 18 – уплотнитель.
Принцип работы
В турбокомпрессоре КамАЗ (Евро-1/2/3/4) отработанные газы подаются в турбину, взаимодействуют с лопастями колеса, передавая ему собственный кинетический потенциал, раскручивая его до 75 тысяч вращений в минуту. Турбинный элемент трансформирует крутящий момент на компрессорный аналог, который забирает атмосферный воздух, активно отбрасывая его к стенкам и разгоняя до высокой скорости. Далее, масса поступает в сужающуюся диффузорную часть, там сжимается, под давлением подаваясь во впускной коллектор, затем — в отсеки сгорания.
Поскольку турбина функционирует стабильно под высоким давлением и механическим воздействием, ее корпусная часть сделана из специальных усиленных сплавов. Для обеспечения большой скорости вращения колес требуется хорошая смазка подшипников. Это условие обеспечивается при помощи маслопроводов, которые подключены к системе смазки мотора.
Стоит уточнить, что в грузовиках КамАЗ монтируются двухрядные V-образные двигатели. Для них уместно применение пары турбинных компрессоров (на каждый ряд по одному элементу). Экономически выгоднее использование двух небольших моделей, чем одного большого агрегата. Турбины рассматриваемых приспособлений обладают относительно небольшими габаритами:
- диаметры крыльчаток — не более 61 мм;
- аналогичные размеры турбины и компрессора — 220 мм;
- масса одного элемента в сборе — около 7 кг.
Применение таких компактных агрегатов дает возможность резко увеличить параметр мотора.
Типы и классы
На современном рынке представлено четыре категории двигателей соответствия экологическим стандартам. В зависимости от этих параметров, подбирается тип и марка компрессора. Ниже в таблице указана эта информация.
Читайте также: