Последовательное соединение активного и индуктивного сопротивлений схема ваз векторная диаграмма
Реальная катушка индуктивности кроме индуктивности обладает активным сопротивлением . Цепь, состоящая из последовательно соединенных резистора и катушки индуктивности (рисунок 3.8а) обладает эквивалентным активным сопротивлением , где - активное сопротивление катушки индуктивности и индуктивным сопротивлением . Полное сопротивление такой цепи определяется из выражения , а ток в цепи . Этот ток будет одинаковым для всех элементов цепи, а приложенное напряжение распределится между элементами цепи, при этом напряжение на резисторе , совпадает по фазе с током, а напряжение на катушке индуктивности (где - полное сопротивление реальной катушки индуктивности) опережает ток на угол . Напряжение на катушке можно представить в виде двух составляющих – активной , совпадающей по фазе с током, и реактивной составляющей , опережающей ток на угол . Таким образом общее напряжение питания содержит две составляющие – активную и индуктивную . Результирующий угол сдвига . В данном случае угол считается положительным, так как ток отстает от напряжения .
Все соотношения для токов и напряжений этой схемы удобно представить в виде векторной диаграммы. Для цепей с последовательным соединением за основу диаграммы принимается величина, общая для всех элементов цепи – вектор тока , и относительно него под соответствующими углами откладываются векторы напряжений на отдельных элементах. Разновидностью векторных диаграмм является топографическая векторная диаграмма, на которой каждая точка диаграммы соответствует определенной точке электрической цепи. Топографическая векторная диаграмма для цепи с последовательным соединением резистора и катушки индуктивности имеет вид, показанный на рисунке 3.8б. Эта диаграмма имеет вид треугольника напряжений, образованного векторами , и . Делением всех сторон треугольника напряжений на ток получается подобный ему треугольник сопротивлений, а умножением сторон на ток - треугольник мощностей.
Рисунок 3.8 - Схема (а) и векторная диаграмма (б) цепи с последовательным соединением резистора и катушки индуктивности.
Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.
Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.
В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.
Схема замещения катушки с последовательным соединением элементов
В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.
Активное сопротивление определяется величиной мощности потерь
R = P/I 2
а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:
Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.
В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.
u = R*Imsinωt + ωLImsin(ωt+π/2).
Векторная диаграмма реальной катушки и полное её сопротивление
Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения
а действующие величины
Вектор общего напряжения
Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.
Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.
UR = Ucosφ
Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR
U = Usinφ (13.14)
Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL
При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде
Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.
Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи.
Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.
Из треугольника сопротивлений следует
Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:
Из треугольников сопротивления и напряжения определяются
Мощность реальной катушки
Мгновенная мощность катушки
Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).
Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).
Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.
Согласно выводам полученных в этих предыдущих (первая, вторая) статьях — в активном сопротивлении P = URI Q = 0; а в индуктивном Р = 0; Q = ULI.
Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:
P = UIcosφ (13.19)
Q = UIsinφ (13.20)
Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;
S = UI = I 2 Z (13.21)
Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):
(13.22)
Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить
cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)
Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).
Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.
Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.
Схема замещения реальной катушки с параллельным соединением элементов
Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.
Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством
Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.
Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтому
Составляющая тока в активном элементе
Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.
Составляющая тока в реактивном элементе
Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается Iр. Для катушки Iр = IL .
Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.
Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим
Порядок расчета, установленный для цепи при последовательном соединении катушки и конденсатора, можно применить и для цепи, содержащей произвольное число катушек и конденсаторов, соединенных последовательно.
На рис. 14.7, а для примера дана схема неразветвленной цепи, состоящей из пяти участков: конденсатора (R1 Х1) и катушки (R2, Х2), представленных активными и реактивными сопротивлениями; резистора R3; идеальных конденсатора Х4 и катушки Х5.
Предположим, что кроме сопротивлений известен ток в цепи i = Imsinωt. Требуется найти напряжения на участках, общее напряжение в цепи и мощность.
Векторная диаграмма
Произвольно выберем условно-положительное направление тока i, в данном случае по часовой стрелке. Для мгновенных величин в соответствии со вторым законом Кирхгофа уравнение напряжений (а — падение напряжение на активном сопротивлении; р — падение напряжения на реактивном элементе )
Для действующих величин необходимо записать векторную сумму:
Численно векторы напряжений определяются произведением тока и сопротивления соответствующего участка. На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения
напряжения на каждом участке схемы, причем направления их относительно веrтора тока выбраны в соответствии с характером сопротивления участков.
При построении диаграммы напряжений выбрана начальная точка 6 совпадающая с началом вектора тока i. Из этой точки проведен вектор U5.2 реактивного напряжения индуктивности (по фазе опережает ток на 90°) между точками 5 и 6 цепи. Из конца его проведен вектор U4р реактивного напряжения емкости (по фазе отстает от тока на 90° ) между точками 4 и 5 цепи. Затем отложен вектор U3a активного напряжения на резисторе (совпадает по фазе с током) между точками
3 и 4 цепи и т. д., если следовать по цепи против направления тока.Точки векторной диаграммы, где сходятся начало следующего вектора с концом предыдущего, обозначены теми же номерами, какими на схеме обозначены точки, отделяющие одни элемент от другого.
При таком, построении напряжение между любыми двумя точками цепи можно найти по величине и фазе, проведя вектор на диаграмме между точками с теми же номерами. Например, напряжение U5.2 между точками 5 и 2 выражается вектором, проведенным из точки 2 в точку 5 (вектор U2.5 направлен в обратную сторону); напряжение U3.1 между точками 3 и 1 выражается вектором, проведенным из точки
1 в точку 3.
Векторная диаграмма, построенная в соответствии с чередованием элементов цепи, называется топографической, так как точки, отделяющие векторы друг от друга, соответствуют точкам, разделяющим элементы схемы.
Расчетные формулы
Из векторной диаграммы видно, что все активные составляющие векторов напряжений направлены одинаково — параллельно вектору тока, поэтому векторное сложение их можно заменить арифметическим и найти активную составляющую напряжения цепи: Ua = U1a + U2a + U3a
Реактивные составляющие векторов напряжений перпендикулярны вектору тока, причем индуктивные напряжения направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая напряжения цепи Up определяется их алгебраической суммой, в которой индуктивные напряжения считаются положительными, а емкостные — отрицательными: Up = — U1р + U2p — U4p + U5p.
Векторы активного, реактивного и полного напряжений цепи образуют прямоугольный треугольник, из которого следует
Подставив падения напряжения, выраженные через ток и соответствующие сопротивления, получим:
Таким образом снова получена знакомая уже формула, связывающая ток, напряжение и полное сопротивление цепи [ср. (14.4) и (14.1)].
В этой формуле ∑Rn—общее активное сопротивление, равное арифметической сумме всех активных сопротивлений, входящих в неразветвленную цепь; ∑Xn — общее реактивное сопротивление, равное алгебраической сумме всех реактивных сопротивлений, входящих в неразветвленную цепь. В этой сумме индуктивные сопротивления считаются положительными, а емкостные — отрицательными. Полное сопротивление неразветвленной цепи
В общем случае полное сопротивление цепи определяется как гипотенуза прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активное и реактивное сопротивления всей цепи. Из треугольника сопротивлений следует:
От треугольника напряжений можно перейти также к треугольнику мощностей и получить уже известные формулы для определения мощностей в цепи:
Вместе с тем активную мощность цепи можно представить как арифметическую сумму активных мощностей в элементах с активным сопротивлением. Реактивная мощность цепи равна алгебраической сумме мощностей реактивных элементов.
В этой сумме мощность индуктивных элементов считается положительной, а емкостных — отрицательной:
Формулы (14.2)—(14.7) являются общими; из них можно получить конкретное выражение для любой неразветвленной цепи.
В схеме, состоящей из последовательно соединенных активного сопротивления, индуктивности и емкости (рис. 22.1), заданы приложенное напряжение U, частота f и числовые значения параметров R, L и С. Требуется найти ток и напряжения на элементах.
При анализе электрических цепей синусоидального тока типична ситуация, когда метод решения незнакомой задачи неизвестен. Во многих случаях помогает следующий подход. По установленным ранее правилам строится векторная диаграмма, из анализа которой выводятся необходимые расчетные формулы. Так же поступим сейчас и мы.
В последовательной цепи общим для всех элементов является протекающий по ним ток, поэтому именно с него начинаем построение векторной диаграммы. Проводим его изображение горизонтально (рис. 22.2).
Вообще, направление первого вектора при построении диаграмм произвольно. Оно диктуется соображениями удобства. Дальше мы должны показать векторы напряжений на всех элементах и в соответствии со вторым законом Кирхгофа в векторной форме U=UR+UL+UC получить вектор входного напряжения. Сложение векторов можно выполнять по правилу параллелограмма, однако удобнее применять правило многоугольника, когда каждый последующий вектор пристраивается к концу предыдущего.
Рис. 22.2 - Векторная диаграмма последовательной цепи
Нам известно, что напряжение на активном сопротивлении совпадает по фазе с током, поэтому вектор UR мы направляем по вектору I. К его концу пристраиваем вектор UL и направляем его вверх, так как напряжение на индуктивности опережает ток на 90°. Напряжение UС находится в противофазе с UL, т.е. отстает от тока на тот же угол 90°, поэтому вектор UС, пристроенный к концу вектора UL, направлен вниз. Векторная сумма UR, UL и UС дает вектор приложеного напряжения U.
Величины напряжений на отдельных элементах цепи нам известны:
Из треугольника oab (рис. 22.2) по теореме Пифагора находим:
Вынося из под знака радикала, записываем последнее выражение в виде: U=I*z; где,z - полное сопротивление.
В последней формуле разность индуктивного и емкостного сопротивлений мы обозначили буквой х. Это общее реактивное сопротивление цепи: х = хL – xC. Сами индуктивность и емкость называются реактивными элементами, и их сопротивления хL и xC тоже носят названия реактивных.
Выражение U=Iz называется законом Ома для всей цепи. Оно может быть записано и так: I=U/z=Uy.
где, y– полная проводимость цепи, представляющая величину, обратную полному сопротивлению 1/z
Если необходимо определить угол сдвига фаз между напряжением и током, то это можно сделать из треугольника напряжений oab (рис. 22.2):
Векторная диаграмма на рис. 22.2 построена для случая, когда UL>UC, что имеет место при XL>XC, когда в цепи преобладает индуктивность, и цепь носит активно-индуктивный характер. Общий ток отстает по фазе от входного напряжения.
Пусть две катушки, обладающие сопротивлениями R1 и R2 , индуктивностями L1 и L2 и взаимной индуктивностью M, соединены последовательно (рис. 30.1).
Рис. 30.1 - Последовательное состояние индуктивно связанных элементов
Возможны два вида их соединения – согласное и встречное. Если считать, что звездочками отмечены начала обмоток, то при согласном включении начало второй подключается к концу первой (рис. 30.1, а). Токи в обеих катушках направлены одинаково относительно одноименных зажимов: от начала к концу. При встречном включении катушек конец второй присоединяется к концу первой (рис. 30.1, б).
Напряжение на каждой из катушек содержит три составляющих: падение напряжения на активном сопротивлении, напряжение самоиндукции и напряжение взаимной индукции:
Последние имеют одинаковые знаки при согласном включении и разные при встречном. Напряжение на входе цепи равно сумме этих двух напряжений:
где Z1 и Z2 – комплексные сопротивления катушек, а ZM – комплексное сопротивление взаимной индукции:
Из формулы выше вытекают формулы, определяющие общую индуктивность цепи и суммарное индуктивное сопротивление:
Можно определить результирующее индуктивное сопротивление каждой катушки. У первой оно равно X1+-XM. И здесь при согласном включении оно больше чем при встречном. Физически это объясняется тем, что в первом случае магнитный поток, охватывающий каждую катушку, больше чем во втором; например, для первой катушки ФIсогл=Ф1+Ф21, а ФIвстр=Ф1-Ф21. Вследствие этого ЭДС электромагнитной индукции, оказывающая току индуктивное сопротивление, при согласном включении больше, чем при встречном.
На рис. 30.1 изображены векторные диаграммы, построенные по уравнениям (30.1) и (30.2).
Рис. 30.2 - Векторные диаграммы последовательной цепи при согласном (а) и встречном (б) включениях
При встречном включении возможен так называемый "емкостный" эффект, когда у одной из катушек напряжение на зажимах отстает по фазе от тока (напряжение на рис. 30.1, б). Это имеет место, когда индуктивность катушки меньше величины взаимной индуктивности. В этом случае результирующая индуктивность рассматриваемой катушки (с учетом взаимной индукции) отрицательна: L2-M < 0. Для всей цепи такой эффект невозможен. Ее индуктивность всегда положительна, и цепь носит активно-индуктивный характер.
Читайте также: