Электрический ток в газах схема
Газы в обычных условиях—диэлектрики. Воздух исполь¬зуют в технике как изолятор:
а) в линиях электропередач;
б) между обкладками воздушных конденсаторов;
в) в контактах выключателей.
Однако, при определенных условиях газы могут быть проводниками: молния, электрическая искра, дуга при сварке. Процесс протекания тока через газ называется газовым разрядом. Свободные заряды: ионы и электроны, возникают в газах только в процессе ионизации.
Все атомы нейтральны, если же электрон покинул место на оболочке, то атом будет положительным ионом, если наоборот, присоединяется электрон, то частица становится отрицательно заряженной, иначе говоря – отрицательным ионом. Т. е. происходит ионизация.
Ионизацию газов вызывают:
1. высокая температура,
2. ультрафиолетовые лучи,
3. рентгеновские лучи, γ (гамма) - лучи и т. п.
Ионизация происходит при условии: произведение заряд электрона Е малое на длину свободного пробега заряженных частиц лямбда и на напряженность Е большое больше энергии ионизации. В результате нагревания или воздействия излучением часть атомов ионизируется, т.е. распадается на положительно заряженные ионы и электроны.
Основная часть освободившихся электронов остаются свободными, остальные присоединяются к молекулам или атомам, образуя отрицательные ионы. Таким образом, в процессе ионизации появляются положительные, отрицательные ионы и электроны.
Если создать в газе электрическое поле, то положительные ионы начнут двигаться к катоду, а электроны и отрицательные ионы - к аноду, образуя электрический ток. В растворах электролитов образование ионов происходит в результате ослабления внутримолекулярных связей под действием молекул растворителя, в результате нагревания, воздействия внешнего ионизатора – излучения. Если ионизатор перестает действовать, то газ перестает быть проводником, так как при приближении положительных ионов и электронов они могут снова образовать нейтральный атом. Этот процесс называется рекомбинация заряженных частиц. Вследствие рекомбинации для поддержания длительного тока необходима постоянная ионизация.
Если разряд протекает только при действии ионизатора, то разряд является несамостоятельным. Если разряд может протекать без действия внешнего ионизатора (электронным ударом), то его называют самостоятельным.
Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя (потенциал ионизации).
Для исследования разряда в газе при различных давлениях используем трубку с двумя электродами.
Рассмотрим опыт по получению несамостоятельных разрядов. Пусть в результате ионизации образовались несколько пар заряженных частиц: положительных ионов и электронов. При небольшой разности потенциалов между электродами трубки положительно заряженные ионы движутся к отрицательному электроду, а электроны и отрицательно заряженные ионы к положительному электроду. В результате в трубке возникает электрический ток, т.е. происходит газовый разряд. Однако не все частицы достигнут электродов, некоторые соединятся и образуют нейтральные частицы. По мере увеличения числа достигших электрода частиц возрастет сила тока, но когда все заряженные частицы, образованные за 1 секунду, достигнут за это время электрода, ток достигнет своего насыщения. Однако, если действие ионизатора прекратить, то прекратится и разряд, так как других источников нет.
График:
ОА — только часть заряженных час¬тиц доходит до электродов, часть рекомбинирует;
АВ—ток почти не увеличивается (ток насыщения);
ВС — самостоятельный разряд
Существует несколько типов самостоятельного разряда, имеющих широкое техническое применение.
1. Тлеющий разряд представляет собой ток малой плотности, возникающий при низком давлении и напряжении на электродах порядка нескольких сотен вольт. Тлеющий разряд сопровождается свечением столба газа. Его используют в светящихся трубках рекламы (заполненных неоном, аргоном), а также в лампах дневного света для возбуждения люминофора, которым покрыта внутренняя поверхность трубки.
Светящийся газ представляет собой "живую плазму". Несветящаяся часть, прилегающая к катоду, называется темным катодным пространством, светящийся столб газа, заполняющий остальную часть, называется анодным положительным столбом.
При определенных давлениях анодный столб распадается на отдельные слои, разделенные темными промежутками (страты).
Причиной ионизации газа в тлеющем разряде является ударная ионизация и выбивание электронов из катода положительными ионами.
2. Дуговой разряд. Применяется в ртутных лампах высокого давления, источниках света, при сварке металлов, в электроплавильных печах, при электролизе расплавов, в электропечах.
Дуговой разряд горит в ртутных лампах - очень ярких источниках света.
Между электродами сварочного аппарата возникает дуговой разряд.
3. Коронный разряд представляет собой ток, проходящий через газ при атмосферном давлении, возникающий под действием неоднородного электрического поля высокой напряженности. Коронный разряд сопровождается слабым свечением и небольшим шумом. Коронный разряд наблюдается вблизи заостренных частей проводников в том случае, когда напряженность электрического поля возле проводника превышает 3 • 106 В/м. Причиной разряда является ударная ионизация газа, происходящая в области, непосредственно граничащей с проводником. Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд используют в электрических фильтрах для очистки продуктов сгорания топлива от при¬месей твердых частиц. Применяется в счетчиках заряженных частиц Гейгера-Мюллера. Громоотвод. Есть отрица-тельное явление, характерное для коронного разряда: вызывает утеч¬ку энергии на высоковольтных линиях. Особенно нежелательно возникновение этого разряда в высоковольтных линиях электропередач, так как он приводит к потерям электрической энергии.
4. Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Высокое напряжение. Применяется при обработке металлов.
Наиболее распространенное в природе состояние вещества, представляющее собой ионизированный газ, нагретый до очень высокой температуры, содержащий электроны, положительно заряженные ионы, нейтральные атомы - плазма. Из нее состоят Солнце, звезды, верхние слои атмосферы. Существует низкотемпературная плазма, высокотемпературная плазма.
Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Это молния, север¬ное сия¬ние, “огни свя¬того Эльма”, ионосфера Земли и, конечно, огонь. Большое значение плазма имеет при получении термоядерной реакции.
Газы в обычных условиях – диэлектрики. Воздух используют в технике как изолятор:
– между обкладками конденсатора;
– в контактах выключателей.
При высокой температуре и под действием ультрафиолетового, рентгеновского и гамма-излучения (внешних ионизаторов) газы становятся проводниками.
В этом легко убедиться, если взять заряженный плоский воздушный конденсатор с подключенным к нему электрометром, и нагреть воздух между пластинами.
Природа газового разряда
При внесении пламени между пластинами воздушного конденсатора происходит ионизация газа и возникновение ионов и электронов. Под действием электрического поля они начнут упорядоченно двигаться между пластинами.
Протекание тока через газ называется газовым разрядом.
При удалении пламени ток прекращается вследствие того, что положительные ионы и электроны не могут долго существовать раздельно и воссоединяются в нейтральную молекулу. Такой процесс называется рекомбинацией .
Газовый разряд, протекающий под действием ионизатора, называется несамостоятельным.
С увеличением разности потенциалов между пластинами кинетическая энергия электрона возрастает настолько, что при соударении его с нейтральной молекулой газа происходит выбивание электрона. Такой процесс называется ударной ионизацией молекул газа. Число электронов и ионов растет лавинообразно, что приводит к увеличению разрядного тока.
Газовый разряд, протекающий в отсутствии ионизатора, называется самостоятельным.
Интенсивность такого газового разряда зависит от напряженности электрического поля между пластинами и давления газа.
Вольтамперная характеристика газового разряда.
ОА – только часть заряженных частиц доходит до электродов, часть их рекомбинирует;
АВ – ток почти не увеличивается (ток насыщения);
ВС – самостоятельный разряд.
Виды газовых разрядов
Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.
Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.
Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.
Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).
Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.
Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.
Применение газовых разрядов
Искровой разряд используется в технике в системе зажигания двигателей внутреннего сгорания. Катушка зажигания дает напряжение 12-15 тысяч вольт. Это достаточно, чтобы между электродами свечи возникла искра для зажигания горючей смеси.
Разновидностью искрового разряда является молния.
Дуговой разряд применяется в качестве мощных источников света (прожекторов), в электроплавильных печах, для электросварки, для ультрафиолетовых излучателей.
Тлеющий разряд используется в рекламных газоразрядных трубках, в лампах дневного света, цифровых индикаторах.
В природе свечение разряженных газов наблюдается в виде полярного сияния.
Коронный разряд используется в электрофильтрах для очистки газов от примесей твердых частиц, в работе молниеотвода. В ЛЭП приводит к утечке электроэнергии.
Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.
Понятие электрического тока
При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.
Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.
Рис. 1. Формула силы тока
Электрический ток в газах
Самостоятельные и несамостоятельные газовые разряды
Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.
Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.
- Тихий– самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
- Тлеющий– если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация– обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.
- Дуговой– сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.
- Искровой– можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
- Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.
Что мы узнали?
Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.
При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками — электрический ток через них не проходит.
На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1 ). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.
Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.
Зарядим пластины воздушного конденсатора и подсоединим их к чувствительному гальванометру (рис. 2 , слева). При комнатной температуре и не слишком влажном воздухе гальванометр не покажет заметного тока: наш воздушный промежуток, как мы и говорили, не является проводником электричества.
Рис. 2. Возникновение тока в воздухе
Теперь внесём в зазор между пластинами конденсатора пламя горелки или свечи (рис. 2 , справа). Ток появляется! Почему?
Свободные заряды в газе
Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды. Какие именно?
Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов. Это электроны, положительные ионы и отрицательные ионы.
Давайте разберёмся, каким образом эти заряды могут появляться в газе.
При увеличении температуры газа тепловые колебания его частиц — молекул или атомов — становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация — распад нейтральных частиц на электроны и положительные ионы (рис. 3 ).
Рис. 3. Ионизация
Степенью ионизации называется отношение числа распавшихся частиц газа к общему исходному числу частиц. Например, если степень ионизации равна , то это означает, что исходных частиц газа распалось на положительные ионы и электроны.
Степень ионизации газа зависит от температуры и резко возрастает с её увеличением. У водорода, например, при температуре ниже степень ионизации не превосходит , а при температуре выше степень ионизации близка к (то есть водород почти полностью ионизирован (частично или полностью ионизированный газ называется плазмой)).
Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.
Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором.
Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.
Одновременно идёт и обратный процесс — рекомбинация, то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4 ).
Рис. 4. Рекомбинация
Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу — в зависимости от сорта газа).
При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт. Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.
Итак, положительные ионы и электроны появляются в газе в результате ионизации. Откуда же берётся третий сорт зарядов — отрицательные ионы? Очень просто: электрон может налететь на нейтральный атом и присоединиться к нему! Этот процесс показан на рис. 5 .
Рис. 5. Появление отрицательного иона
Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.
Несамостоятельный разряд
Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц — электрический ток в газе.
Рис. 6. Несамостоятельный разряд
На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов — к отрицательному электроду (катоду), электронов и отрицательных ионов — к положительному электроду (аноду).
Описанный процесс, изображённый на рис. 6 , называется несамостоятельным разрядом в газе. Почему несамостоятельным? Потому для его поддержания необходимо постоянное действие ионизатора. Уберём ионизатор — и ток прекратится, поскольку исчезнет механизм, обеспечивающий появление свободных зарядов в газовом промежутке. Пространство между анодом и катодом снова станет изолятором.
Вольт-амперная характеристика газового разряда
Зависимость силы тока через газовый промежуток от напряжения между анодом и катодом (так называемая вольт-амперная характеристика газового разряда) показана на рис. 7 .
Рис. 7. Вольт-амперная характеристика газового разряда
При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.
При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.
С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).
При определённой величине напряжения (точка ) скорость движения зарядов становится настолько большой, что рекомбинация вообще не успевает происходить. С этого момента все заряженные частицы, образованные под действием ионизатора, достигают электродов, и ток достигает насыщения — а именно, сила тока перестаёт меняться с увеличением напряжения. Так будет происходить вплоть до некоторой точки .
Самостоятельный разряд
После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.
Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)
Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.
Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.
Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!
Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.
Газы (в том числе и воздух) при обычных условиях не проводят электрический ток. Только под действием высокой температуры, большой разности потенциалов, рентгеновских лучей, ультрафиолетовых лучей, космических лучей, радиоактивного излучения и некоторых других причин газы ионизируются и становятся проводниками. Если прекращается действие причины, вызывающей ионизацию газа, то он перестает проводить электрический ток (в отличие от электролитов, которые всегда являются проводниками электрического тока).
Ионизация газа отличается от ионизации жидкого проводника. В жидкости молекула распадается на две заряженные части, а в газе происходит отделение электронов от молекул (рис. 1) (при этом молекулы превращаются в положительно заряженные ионы).
Рисунок 1. Процесс ионизации газа - распад нейтральных частиц на электроны и положительные ионы
Одним из видов прохождения электрического тока через газ является электрический разряд. Примеров электрических разрядов можно привести очень много: искра, образующаяся при разрыве электрической цепи, молния, пробой газового разрядника и т. д. Все эти разряды кратковременны.
Существует и другой вид разряда в газах — это так называемый дуговой разряд.
Рисунок 1. Дуговой разряд
Явление дугового разряда было открыто выдающимся русским ученым-электротехником В. В. Петровым. Суть этого явления заключается в том, что между двумя угольными стержнями, соединенными с источником электрической энергии, возникает непрерывный электрический разряд, сопровождаемый ярким светом и большим выделением тепла. Свойство дуг создавать яркий свет раньше использовался в прожекторах, киноаппаратуре и т. д. Благодаря большому выделению тепла электрическая дуга применяется в электрометаллургии.
Следует отметить, что электрическая дуга является простейшим генератором низкотемпературной плазмы. Плазма не обязательно связана с огромными температурами и сложнейшими установками. Электрическая дуга, молния, свечение неоновых реклам и даже пламя обычной свечи — все это различные виды низкотемпературной плазмы. Генераторы низкотемпературной плазмы называются плазматронами. Плазматрон позволяет практически любой газ нагреть до температуры 7000—10 000° С при помощи электрической дуги постоянного или переменного тока. Плазматроны находят все более широкое применение в химической и горнорудной промышленности, металлургии и в других отраслях народного хозяйства.
На явлении проводимости газов при ионизации основано устройство многих радио- и электротехнических приборов: ртутных ламп, газотронов, тиратронов, газовых разрядников, газовых стабилизаторов напряжения, газосветных трубок и др.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Читайте также: