Блок питания для ноутбука от прикуривателя схема
други схемопаи, выручайте может быть у кого-то есть готовое решение проблемы? надо преобразователь с 23-30в на входе в 19в 6а на выходе, полагаю сделать импульсник, т.к. лишние потери мне не нужны и воздух зря греть не хочу линейниками если есть схемка, буду признателен. и еще, надо придумать к этому делу alarm, чтоб при разряде батарей сигнализировал, а то мой 24-220 зараза молча выгрызает батарейку и радуется, что я не могу уехать
__________________
"Это невозможно!" - сказала Причина.
"Это безрассудство!" - заметил Опыт.
"Это бесполезно!" - отрезала Гордость.
"Попробуй. " - шепнула Мечта.
Вы не указали потребляемый ток. У моего нетбука 1.6А. Если у вас не более 3А то микросхем просто море а ля как LM2576HVT-ADJ. Добавите диод с дросселем, выходную защиту от перенапряжения в случае пробоя внутреннего транзистора. Если ток больше, то можно довесить внешний транзистор помощнее. На пятую ногу завесить компаратор, который будет отслеживать разряд батарей. Кто -то може что более изящное предложит.
Опубликованы материалы вебинара, посвященного решениям задач освещения с LED-драйверами MEAN WELL. LED-драйверы MEAN WELL насчитывают несколько десятков семейств, которые широко используются, и легко интегрируются в различные светодиодные светильники. На вебинаре были представлены новинки 2022 года. Рассказали о драйверах MEAN WELL, существующих режимах стабилизации, способах повышения устойчивости светильника к имеющимся помехам, а также предложили оптимальные семейства для различных отраслей применения.
А поискать схему ноутбука и посмотреть какие микрухи на входе стоят ??
в свое время когда игрался с аспире1, выискал схему, на входе стояли 2 микрухи ШИМ (одна на питание, вторая на заряд аккумулятора) которые по даташитам кушали от 8 до 26 вольт, так что питал напрямую без пробразователя, только повесил большую катушку и емкость для защиты от помех. все было окей.
дружище LEAS, рад видеть ток кстати я указал, 6а, испробовал кучу простых понижающих, LM2576HVT-ADJ, 3843, 36063, не дают они того результата, что хотелось бы (транзисторы греют воздух, а нужно экономить батарейку), 2 дня разные схемы паял, самый удачный вариант получился вчера, намучившись до одури я решил рискнуть и собрать топор на всеми любимой тл494 сперва просто как понижайку, но с заряжающимся ноутом, а он кушает порядка 7а, транзистор греется, как сковородка, в общем от простого к сложному я решил не ломать мозг, выдрал из сгоревшего авто усилка трансформатор, собрал типовую схемку на 494 с драйвером из того же усилка, да и обвязку почти всю там выпаял, все работает шикарно, напряжение не проседает под нагрузкой даже 20а, полевики не выше 50градусов, но есть одно НО, токоограничения в усилке не было, ровно как и стабилизации по напр. ну обратку по напряжению то я помню, как делать и сделал, а вот ограничить ток попробовал сделать, на 15 ногу посадил 2.5в делителями, с 16 вывел на шунт кот. разделяет общий минус и ключи через переменник 1.5ком и появился свист сразу в трансе, да и ключи выбило короче довые я вечерком думаю ключи поменять и на всякий случай хочу защиту от перегрева добавить, терморезистор из того же усилка на радиатор повесить, так собственно о чем вся тирада. помогите организовать верно ограничение тока, если не сложно, то с примером вроде того, что на 15 ногу такие резюки, на 16 такие, буду благодарен, конечную схемку и картинки работы выложу как всегда по завершению.
__________________
"Это невозможно!" - сказала Причина.
"Это безрассудство!" - заметил Опыт.
"Это бесполезно!" - отрезала Гордость.
"Попробуй. " - шепнула Мечта.
Авто-адаптеры для ноутбука на таймере 555.
В качестве формирователя ШИМ для этого преобразователя, используется интегральный таймер КР1006ВИ1, импортный аналог NE555, LM555. С его выхода сигнал поступает на ключ, выполненный на полевом транзисторе 45N03, в качестве которого можно применить так же BUZ11, CEB603, CEP703, NDP406, IRFZ33 и многие другие, главное чтобы максимальное их напряжение было не менее 40В, а максимальный ток не менее 15А, ну и корпус желательно ТО-220.
Частота преобразования генератора таймера, определяется конденсатором С1, и при емкости указанной на схеме составляет примерно 40 кГц. Управление скважностью импульсов, осуществляется через 5 вывод таймера. Некоторые типы импортных аналогов таймера имеют другую схему управления по этому входу, и по этому могут работать не корректно.
В качестве диода VD2 можно применить спаренный диод шоттки, с обратным напряжением не менее 40В и максимальным током не менее 15А, так же желательно в корпусе ТО-220. Например SLB1640, или STPS1545 и т.д. Диод VD1 - защита от переполюсовки, прямой ток не менее 6А. Вместо VT2 отлично подойдёт КТ315. Стабилитрон VD3 определяет выходное напряжение преобразователя.
Одна из самых ответственных деталей в этом преобразователе - дроссель. Он намотан на кольце из порошкового железа, диаметром около 27 мм, применяемого в компьютерных блоках питания в качестве дросселя групповой стабилизации. Дроссель имеет 21 виток, тремя сложенными вместе проводами ПЭВ-1, диаметром 0.75 мм. Индуктивность его около 44 мкГн и активное сопротивление около 0.1 ом.
В качестве корпуса для адаптера, используется металлический корпус от 50-ваттного электронного трансформатора. Ее размеры 67?46?30 мм. В этом корпусе вместо двух ключей полу-моста можно удобно разместить полевой транзистор и диод, чтобы прижать их к стенке корпуса для отвода тепла. Корпуса транзистора и диода нужно изолировать от корпуса прокладкой из фторопласта или слюды.
Печатная плата и расположение деталей на плате ниже на рисунке.
Следующая схема практически аналогична первой. Отличается типами применённых в схеме деталей. Если точная установка выходного напряжения в этой схеме не нужна, то вместо PR1, VD2, R5 - можно поставить цепочку из стабилитрона и постоянного резистора, аналогичной VD3, R5 на схеме выше.
Следующая схема так же выполнена на интегральном таймере. По сложности она практически не отличается от вышеприведённых. В этой схеме реализована защита от пониженного входного напряжения бортовой сети автомобиля, и в случае его снижения ниже 9 В - выходное напряжение преобразователя тоже начинает снижаться, предотвращая насыщение дросселя и выход из строя силового ключа. Также имеется защита выхода от значительного перенапряжения: в случае нарушения обратной связи выходное напряжение преобразователя ограничивается величиной порядка 25 В.
Выходное напряжение этого преобразователя 19 вольт, максимальный ток нагрузки около 4,7 ампера.
Силовой транзистор КП727Б можно заменить на КП723 c буквами А–В, КП746 c буквами А–В, а также на любые аналогичные импортные, рассчитанные на постоянный ток не менее 15 А и имеющие, по возможности, малое сопротивление открытого канала.
Диод с барьером Шоттки КД272А заменяется на 2Д2998 с буквами Б, В, КД2998 с буквами В–Д, MBR1635, MBR1645, а также любые другие диоды Шоттки, рассчитанные на прямой ток не менее 15 А и обратное напряжение не менее 25 В. Диод VD2 и транзистор VT2 необходимо снабдить теплоотводами площадью по 50 см2 каждый.
Транзистор VT1 – на любые другие транзисторы, у которых типовое значение коэффициента передачи тока базы составляет около 100 при токе коллектора 1 мА.
Дроссель L1 наматывается проводом ПЭВ-2 диаметром 1,25 мм на двух сложенных вместе кольцевых магнитопроводах КП27?15?6 из пермаллоя МП140. Подойдёт и более тонкий провод, соединённый в несколько жил с общей площадью сечения около 1 мм2. Намотка содержит 16 витков.
Можно также применить жёлто-белый кольцевой магнитопровод T106-26 размерами 27х14х12 мм от много-обмоточного дросселя в блоке питания компьютера, в этом случае оставляется имеющаяся на дросселе обмотка в 24 витка провода диаметром 1 мм, остальные обмотки удаляются. При самостоятельной намотке она выполняется в один полный слой провода диаметром 1…1,25 мм. Подойдут и другие дроссели с индуктивностью не менее 18 мкГн, рассчитанные на утроенный максимальный ток нагрузки.
С другой стороны, индуктивность дросселя не должна быть слишком большой: при его индуктивности порядка 100 мкГн и более обратная связь стабилизатора может потерять устойчивость, и на коллекторе транзистора VT1 будут незатухающие колебания.
Авто-адаптеры для ноутбука на микросхеме UC3843.
Описываемый ниже адаптер, представляет собой однотактный импульсный повышающий преобразователь, собранный по типовой схеме на микросхеме UC3843. Он обеспечивает на выходе напряжение 16.5 В при токе до 4 А.
При сборке этой схемы использовались SMD- компоненты, благодаря чему, размеры собранного устройства составляют 45x30x15 мм.
Устройство собрано на двухсторонней печатной плате, размером 37?23 мм. из стеклотекстолита, толщиной 1.5 мм. Верхняя сторона платы используется только в качестве экрана и общего провода. Печатная плата устройства (зеркальное изображение) приведена ниже на рисунке.
Катушка L1 и конденсатор С9 установлены с обратной стороны платы (под катушку в плате сделан вырез), все остальные детали — так, как показано на рисунке. Типы примененных компонентов приведены в таблице.
Правильно собранное устройство налаживания не требует. Если требуется иное выходное напряжение, следует изменить величину резистора R9, исходя из того, что на резисторе R10 должно при этом получиться напряжение, равное 2.5 В.
Вот, посмотрите ещё один вариант исполнения данного адаптера с применением элементов SMD.
Рисунок печатной платы данного устройства.
Расположение элементов на печатной плате данного устройства.
Схема второго адаптера практически не отличается от вышеприведённой. Разница лишь в том, что в данной схеме можно регулировать выходное напряжение в пределах 14-27 вольт. Средний ток нагрузки её составляет 2,5 ампера.
Применённые схеме транзисторы, диоды, а так же данные используемого дросселя - аналогичны и заменяемые на описанные в аналогичных схемах выше. Поэтому останавливаться подробно на этом не буду.
Ниже на фотографиях вариант сборки данной схемы с применением так же SMD-= компонентов.
Если нет необходимости регулировать выходное напряжение на выходе данного преобразователя, то тогда переменный резистор R9 можно исключить, и подобрать резистор R8 так, чтобы выходное напряжение преобразователя соответствовало необходимому.
Авто-адаптеры для ноутбука на микросхеме КР1156ЕУ5 (МС34063).
Описываемое устройство повышает напряжение бортовой сети автомобиля от 12 до 18 вольт, при этом обеспечивая выходной ток, равный 3.2 ампера, что вполне достаточно для работы ноутбука. Устройство собрано на основе популярной отечественной микросхемы КР1156ЕУ5 (иностранный аналог - МС34063).
Вариант исполнения данного преобразователя на фото ниже. Печатная плата данного преобразователя размещена в литом алюминиевом корпусе и закрыта крышкой.
Налаживание сводится к установке частоты преобразования, соответствующей максимальному КПД. Для этого ВХОД преобразователя через амперметр подключают к источнику постоянного тока напряжением 12В и мощностью не менее 100 Вт, в качестве которого можно применить импульсный блок питания от компьютера. К выходу преобразователя подключают нагрузочный резистор сопротивлением 5,1 Ом мощностью 50Вт (например ПЭВ-50) и параллельно ему - вольтметр постоянного тока. Конденсатором С4 плавно изменяя частоту преобразования, добиваются минимального значения выходного тока при неизменном выходном напряжении. Если не требуется получить максимальный КПД преобразователя, конденсатор С4 можно не устанавливать, но емкость конденсатора С3 должна быть 360пФ.
Вариант исполнения печатной платы и размещение деталей на ней, показаны на рисунках ниже.
Ещё один адаптер, выполненный на подобной микросхеме, отличается от вышеприведённого тем, что выходное напряжение у него можно установить в пределах необходимого при помощи подстроечного резистора, ну и немного усложнённой схемой выхода.
Авто-адаптер для ноутбука на микросхеме TL494.
Следующий авто-адаптер для работы ноутбука от бортовой сети автомобиля, собран из деталей от компьютерных блоков питания. В качестве ШИМ-регулятора в данном адаптере используется широко распространённая в таких блоках питания, микросхема TL494 и её аналоги.
ШИМ-регулятор на микросхеме TL494 работает здесь на частоте 40 кГц и управляет силовым полевым транзистором.
Схема обеспечивает при выходной мощности в 50-60 Вт (при 20 В на выходе) КПД 90%, и при нагрузке 100 Вт - КПД 85%. Пульсации выходного напряжения при этом могут достигать 0,5 вольта, а максимальный средний входной ток 12А. Если такие пульсации не устраивают, то их можно уменьшить, увеличив ёмкость выходных электролитических конденсаторов.
Большой входной ток (при нагрузке 100 Вт) требует тщательной разработки печатной платы. Силовые проводники (дорожки), могут быть усилены проволокой. Силовой входной кабель должен иметь по крайней мере не менее сечение 1,5 мм ?, и непосредственно припаян к печатной плате.
В качестве выходных силовых транзисторов желательно использовать те, у которых малое сопротивление открытого канала. В частности SUP75N06-07L, SUP75N03-08,SMP60N03-10L,IRL1004,IRL3705N. Хуже будет работать транзистор BUZ11, так как по сравнению с первым, у него сопротивление открытого канала в пять раз больше.
Так же серьёзно следует отнестись к выбору силового диода и дросселя, которые должны быть рассчитаны на ток, не менее 10А.
Авто-адаптер для ноутбука на микросхеме UC1843.
Ещё один авто-адаптер для работы ноутбука от бортовой сети автомобиля, собран на не очень дешёвой и не так распространённой микросхеме, ШИМ-регуляторе UC1843. Схема обеспечивает на выходе напряжение 18 вольт с током нагрузки до 5-ти ампер. Рассмотрим схему адаптера.
Выходное напряжение этого адаптера, можно устанавливать в пределах 16-35 вольт, переменным резистором R2. Для охлаждения транзистора и диода при токе нагрузки до 5-ти ампер - достаточно небольшого радиатора, например от компьютерных блоков питания. Вариант исполнения данной схемы, смотрите ниже на рисунке.
В данном адаптере так же можно применить транзисторы и диоды, которые были описаны в вышеприведённых схемах, так как все они в основном построены по одному принципу, поэтому подробно на их замене останавливаться не буду.
Авто-адаптеры для ноутбука на микросхеме LT1070, LM2577T-ADJ.
Приведу ещё пару схем авто-адаптеров, с применением не так широко распространённых и не очень дешёвых микросхем.
Первый авто-адаптер собран на микросхеме LT1070. Это пожалуй самая дорогая и менее доступная микросхема из всех описанных здесь конструкций. Это DC-DC преобразователь, который поддерживает на выходе напряжение 19 вольт, при токе нагрузке 2,5-3А.
Для контроля уровня выходного напряжения и его стабилизации, используется внутренняя схема стабилизации микросхемы LT1070. Суть ее работы в том, что она таким образом изменяет скважность импульсов, поступающих на первичную обмотку трансформатора, чтобы на выводе 2 А1 - было постоянное напряжение 1,24V.
Дня получения стабильного выходною напряжения, нужно с выхода вторичного выпрямителя на VD2, постоянное напряжение через делитель - подать на вывод 2 А1. А соотношение резисторов делителя должно быть таким, чтобы при правильном напряжении на выходе, на выводе 2 А1 было напряжение 1,24V. Резисторы делителя это R3 и R4.
Точным подбором R4 устанавливают требуемое номинальное стабилизированное выходное напряжение. В данном случае, это 19V.
Микросхему и диоды необходимо укрепить на радиаторах. Общим радиатором может служить металлический корпус, в котором собран преобразователь.
При правильном монтаже и исправных деталях налаживание сводится к проверке выходного напряжения. Если оно отличается от необходимого нужно изменить сопротивление резистора R4. Уменьшение сопротивления ведет к повышению напряжения, а увеличение к его понижению.
Второй, аналогичный по характеристикам адаптер, собран на микросхеме LM2577T-ADJ. Эта схема из всех приведённых, наверно самая простая, но микросхема, применённая здесь, тоже не так широко-доступная, хотя гораздо чаще имеется в продаже, чем LT1070 , да и не так дорога, как вышеупомянутая (видел от 5$).
Печатная плата для этого адаптера не делалась, детали были установлены на макетную плату и монтаж выполнен монтажными проводами. На выборе дросселя и диода, я останавливаться не буду, всё это есть в описаниях выше, так что выбирайте на свой вкус.
Микросхема прикреплена к алюминиевой пластине, которая служит радиатором, и вся эта конструкция помещена в подходящий пластмассовый корпус.
Надеюсь, что из всего разнообразия описанных схем, Вы найдёте себе наиболее подходящую по исполнению и применённым в сборке наиболее доступным радиодеталям.
Удачи в сборке.
Первое включение было забавным — в режиме 15В нагрузил всего на 3А (45Вт) и через 10 секунд преобразователь задымил :)
Волей-неволей пришлось разбирать…
Вскрытие и повторное включение показало — дымит выходной фильтрующий дроссель (на плате подписан L3).
Китайцы явно накосячили — поставили дроссель на 1А вместо положенных 4-5А.
Снял термоусадку — внутри изоляция провода обгорела :(
До кучи изоляция выходного кабеля была подгоревшей в результате перегрева при пайке
Пришлось доделывать преобразователь ещё до испытаний:
— Заменён выходной дроссель 50мкГн/5А (L3).
— Установлен входной дроссель 5мкГн/10А (L1) для уменьшения помех в бортовую сеть (место под него предусмотрено).
— Заменён входной конденсатор 470мкФ/16В (C9) на 1000мкФ/25В, т.к. номинальное бортовое напряжение 14,4В с допускаемыми кратковременными выбросами.
— Заменён конденсатор в цепи питания ШИМ 220мкФ/16В (С12) на 470мкф/25В по той-же причине.
— Заменён выходной конденсатор 330мкФ/25В (C6) на 330мкФ/50В (35В просто не нашёл).
— Добавлен защитный стабилитрон на 15В в цепи затвора полевика (место под него предусмотрено).
— Подпаленные провода подрезал и одел в термоусадку.
— Все габаритные элементы закрепил герметиком.
— Переклеил наклейку со шкалой напряжений, т.к. китаец её сильно сместил и это не позволяло однозначно видеть уставку.
Получилось так:
При перегрузке, напряжение на входе просаживается и преобразователь начинает натужно пищать, уменьшая выходное напряжение.
Заявленные 80Вт преобразователь выдаёт лишь очень кратковременно, т.к. быстро перегреваются внутренности и входной кабель.
Длительно он тянет максимум 55Вт, при этом радиатор полевика и накопительный дроссель греются до 100гр.
При выходной мощности до 45Вт, преобразователь работает нормально без перегрева — это и есть его номинальная мощность.
Выходит, преобразователь вытянет далеко не всякий ноутбук под полной нагрузкой.
Немного радует факт, что при выходе преобразователя из строя, выходное напряжение не превысит 14,4V :)
Вывод: без переделки устройство фактически оказалось неработоспособным, с переделкой подходит только для питания маломощных ноутбуков и нетбуков. К покупке не рекомендую.
Для питания ноутбуков от бортовой сети автомобиля выпускаются преобразователи напряжения, но они имеют достаточно высокую стоимость, от $50 и выше. Стоимость описываемого преобразователя намного ниже. Тем более, что большую часть деталей можно взять из старого блока питания от компьютера. Сборка займет пару вечеров.
В качестве формирователя ШИМ преобразователя используется интегральный таймер КР1006ВИ1 или импортный аналог LM555. С его выхода сигнал поступает на ключ - полевой транзистор. Частота преобразования определяется конденсатором С1, и при емкости указанной на схеме, составляет примерно 40 кГц. Управление скважностью осуществляется через вывод 5 таймера. Некоторые типы импортных аналогов таймера имеют другую схему управления по этому входу, и поэтому могут работать некорректно.
Вместо транзистора 45N03 можно применить BUZ11, CEB603, CEP703, NDP406, IRFZ33 и многие другие, главное, чтобы максимальное напряжение было не менее 40 В, максимальный ток не менее 15 А, и корпус ТО-220.
VD2 – сдвоенный диод Шоттки с обратным напряжением не менее 40 В и максимальным током не менее 15А, в корпусе ТО-220. Например SLB1640, или STPS1545. Диод VD1 – защита от переполюсовки, прямой ток не менее 6 А. Вместо VT2 применим, например, КТ315. Стабилитрон VD3 определяет выходное напряжение преобразователя.
Одна из самых ответственных деталей – дроссель, намотан на кольце из порошкового железа, диаметром около 27 мм, применяемого в компьютерных блоках питания в качестве дросселя групповой стабилизации. Обмотка выполнена 21 витком из трех сложенных вместе проводов ПЭВ-1 диаметром 0.75 мм. Дроссель имеет индуктивность около 44 мкГн и сопротивление около 0.1 Ом.
В качестве корпуса используется металлическая коробка от 50-ваттного электронного трансформатора для питания 12 В галогенных ламп освещения. Ее размеры 67×46×30 мм. В этом корпусе вместо двух ключей полумоста можно удобно разместить полевой транзистор и диод, чтобы прижать их к стенке корпуса для отвода тепла. Корпуса транзистора и диода нужно изолировать от корпуса прокладкой из фторопласта или слюды.
Печатная плата в формате PCAD2004 noteadpt.zip, 13 Кб.
Тут – not_bot.jpg, 10 Кб, рисунок печатной платы для лазерно-утюговой технологии.
Схема размещения компонентов на плате:
КПД этого преобразователя, при выходном токе 3 А, составляет 95%. При менее жестких режимах КПД может достигать 97%, он сильно зависит от качества дросселя, VT1 и VD2. Впрочем повышение КПД имеет смысл только для снижения выделяемого тепла полевым транзистором, диодом Шоттки и дросселем. При указанном КПД, при длительной работе, корпус преобразователя имеет температуру около 45 градусов Цельсия.
Следует обратить особое внимание на качество разъемов, так как через них будет протекать значительный ток. Также провода, особенно идущие к входному разъему от прикуривателя, нужно выбирать сечением более 1.5 мм 2 .
Этот преобразователь в настоящее время используется вместе с ноутбуками Compaq Evo N610c, Compaq Armada M750, а также с несколькими моделями Rover.
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
12.JPG" />
В сегодняшнем обзоре я хочу поделиться с вами своими впечатлениями об универсальном автомобильном блоке питания для ноутбуков, который был приобретен на просторах eBay.
Претензий к качеству изготовления данного устройства у меня нет, элементы корпуса плотно подогнаны друг к другу — никаких ненужных щелей и зазоров нет. Пластик не воняет, провода гибкие. В комплект поставки входит, собственно, сам блок питания и пластиковая планка с 8 различными коннекторами. В силу разнообразия этих самых коннекторов, данный блок питания может быть использован с большинством ноутбуков, питание которых обеспечивается за счет двухконтактного разъема. Выглядят они следующим образом:
К слову, в пластиковой планке все разъемы сидят надежно — не вываливаются. Чтобы их достать приходится даже прилагать усилие. Конечно, со временем отверстия в планке, что называется, разобьются, но так как часто извлекать/возвращать обратно разъемы не приходится, думаю, она мне прослужит достаточно долго.
Фиксируются разъемы в планке за счет двух пинов-гвоздиков, выполняющих роль плюсового и минусового контакта. К слову, пины разные по своему диаметру (видно на фото), так что подключить их к блоку питания перепутав полярность не получится.Так что в этом плане, о сохранности техники можно не беспокоиться.
Такие строение пинов обусловило и наличие отверстий разного диаметра в разъеме блока питания.
Чтобы подключить коннектор к разъему нужно надавить на него с приличным усилием. Если честно, я меня больше всего тревожил вопрос о том, что в месте соединения разъемов контакт будет теряться. Оказалось же, что переживать об этом не стоило. Сейчас больше волнуюсь за то, что при извлечении коннектора из разъема пины вырвутся и останутся внутри.
Включается данный блок питания в прикуриватель. Суммарная длина провода (от разъема прикуривателя до блока и от блока до коннектора, подключаемого к ноутбуку) около метра. Такой длины вполне достаточно для использования ноутбука пассажиром, сидящим на переднем сиденье, а как быть тем, кто сидит сзади и не имеет доступа к гнезду прикуривателя? Предохранителя в разъеме нет.
Корпус блока питания изготовлен из черного матового пластика, как я уже писал претензий к его качеству у меня нет. На его лицевой стороне расположен ползунок регулирования напряжения и индикационный светодиод красного цвета. Здесь же масса разнообразных надписей, включая основные характеристики:
Итак, как видно, данный адаптер умеет работать с напряжениями 15, 16, 18, 19, 20, 22 и 24В. Максимальный ток 3,3А. Мощность — 80Вт. В принципе, таких характеристик достаточно для того, чтобы запитать почти любой ноутбук.
На тыльной стороне устройства ничего интересного нет, если не считать прорези, выполняющие функцию отвода тепла — пассивного охлаждения.
15В:
16В:
18В:
19В:
20В:
22В:
24В:
Под нагрузкой напряжение проседает на тот самый вольт и в итоге реальные показатели на выходе более-менее соответствуют положению ползунка. К слову, ползунок перемещается плавно, не заедает, не закусывает. Напротив каждой отметки он как бы фиксируется, так что, как мне показалось, проскочить нужный режим не получится, как и случайно сбить его.
Последний тест — проверка работоспособности в связке с ноутбуком:
Как видно, проблем не возникло. Ноутбук запустился, загрузился и успешно проработал до тех пор, пока не был выключен. К слову если верить написанному на штатном адаптере, то для работы моего ноутбука требуется напряжение в 19В. Но во время испытаний он без проблем работал при выставлении ползунка на 16В :)
Подводя итог всему, что тут было написано, могу сказать, что меня данный адаптер устроил на 100%. При невысокой цене он отличается неплохим качеством изготовления и хорошей работоспособностью. Сейчас мой ноутбук с полностью умершей батареей стал более мобильным, чем был ранее. Причем даже тратиться на это особо не пришлось :)
Читайте также: